MSCAReg-Net: Multi-scale complexity-aware convolutional neural network for deformable image registration

  • Deep learning-based image registration (DLIR) has been widely developed, but it remains challenging in perceiving small and large deformations. Besides, the effectiveness of the DLIR methods was also rarely validated on the downstream tasks. In the study, a multi-scale complexity-aware registration network (MSCAReg-Net) was proposed by devising a complexity-aware technique to facilitate DLIR under a single-resolution framework. Specifically, the complexity-aware technique devised a multi-scale complexity-aware module (MSCA-Module) to perceive deformations with distinct complexities, and employed a feature calibration module (FC-Module) and a feature aggregation module (FA-Module) to facilitate the MSCA-Module by generating more distinguishable deformation features. Experimental results demonstrated the superiority of the proposed MSCAReg-Net over the existing methods in terms of registration accuracy. Besides, other than the indices of Dice similarity coefficient (DSC) and percentage of voxels with non-positive Jacobian determinant (|J(phi)|=<0), a comprehensive evaluation of the registration performance was performed by applying this method on a downstream task of multi-atlas hippocampus segmentation (MAHS). Experimental results demonstrated that this method contributed to a better hippocampus segmentation over other DLIR methods, and a comparable segmentation performance with the leading SyN method. The comprehensive assessment including DSC, |J(phi)|=<0, and the downstream application on MAHS demonstrated the advances of this method.

Volltext Dateien herunterladen

Metadaten exportieren

Metadaten
Verfasserangaben:Hu YuORCiD, Qiang ZhengORCiD, Fang Hu, Chaoqing MaORCiD, Shuo Wang, Shuai WangORCiD
URN:urn:nbn:de:hbz:tr5-10120
DOI:https://doi.org/10.1049/ipr2.12988
Titel des übergeordneten Werkes (Englisch):IET Image Processing
Verlag:Institution of Engineering and Technology
Dokumentart:Wissenschaftlicher Artikel (Fachzeitschriften)
Sprache:Englisch
Datum des OPUS-Uploads:12.09.2024
Datum der Erstveröffentlichung:21.11.2023
Veröffentlichende Hochschule:Hochschule Trier
Datum der Freischaltung:12.09.2024
Freies Schlagwort / Tag:deep learning-based image registration (DLIR); multi-atlas hippocampus segmentation (MAHS); multi-scale complexity-aware module (MSCA-Module); multi-scale complexity-aware registration network (MSCAReg-Net); registration accuracy
GND-Schlagwort:Medizin; Bildverarbeitung; Bildanalyse; Deep learning; Hippocampus
Jahrgang:18
Ausgabe / Heft:4
Erste Seite:839
Letzte Seite:855
Einrichtungen:FB Informatik + Therapiewissenschaft
DDC-Klassifikation:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme
Lizenz (Deutsch):License LogoCreative Commons - CC BY - Namensnennung 4.0 International