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Abstract

Deep learning-based image registration (DLIR) has been widely developed, but it remains
challenging in perceiving small and large deformations. Besides, the effectiveness of the
DLIR methods was also rarely validated on the downstream tasks. In the study, a multi-
scale complexity-aware registration network (MSCAReg-Net) was proposed by devising
a complexity-aware technique to facilitate DLIR under a single-resolution framework.
Specifically, the complexity-aware technique devised a multi-scale complexity-aware mod-
ule (MSCA-Module) to perceive deformations with distinct complexities, and employed a
feature calibration module (FC-Module) and a feature aggregation module (FA-Module)
to facilitate the MSCA-Module by generating more distinguishable deformation features.
Experimental results demonstrated the superiority of the proposed MSCAReg-Net over
the existing methods in terms of registration accuracy. Besides, other than the indices
of Dice similarity coefficient (DSC) and percentage of voxels with non-positive Jacobian
determinant (|J𝜙| ≤ 0), a comprehensive evaluation of the registration performance was
performed by applying this method on a downstream task of multi-atlas hippocampus seg-
mentation (MAHS). Experimental results demonstrated that this method contributed to a
better hippocampus segmentation over other DLIR methods, and a comparable segmenta-
tion performance with the leading SyN method. The comprehensive assessment including
DSC, |J𝜙| ≤ 0, and the downstream application on MAHS demonstrated the advances of
this method.

1 INTRODUCTION

Deformable image registration is a critical procedure in a num-
ber of medical image analysis tasks [1], and widely applied in
multi-atlas based image segmentation [2], radiotherapy assess-
ment [3] and computer-assisted surgery [4]. Deformable reg-
istration aims to conduct anatomical correspondence between
fixed image and moving image by establishing a non-linear
transformation. Since conventional medical image registration
algorithms [5] suffer complex computation caused by iterative
optimization, deep learning approaches have been widely devel-
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oped for fast image registration by adopting convolutional neu-
ral network (CNN) to learn spatial transformation under super-
vised [6], weakly supervised [7] or unsupervised learning frame-
work [8]. However, deep learning-based deformable image
registration remains a challenging task, especially for images
with complicated deformations (small and large deformations)
introduced by inter-person variations or disease progression.
Besides, the effectiveness of deep learning-based deformable
image registration when applied on the downstream medical
image analysis tasks is also worthy of investigation regarding
balancing the registration accuracy and diffeomorphism.
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1.1 Related work

1.1.1 Single-resolution registration

In single-resolution registration methods, the image-wise [8] or
patch-wise [9] strategy is adopted to estimate the deformation
field in image registration. Specifically, the typical VoxelMorph
method employed an image-wise CNN to capture contextual
information and was applied on 3D MRI brain image registra-
tion [8]. Ma et al. [10] designed an efficient locality preserving
matching method to maintain the local neighbourhood struc-
tures of those potential true matches and used it to solve image
matching problems. Following this progress, a bidirectional
deformation estimation registration network with adaptive fea-
ture integration called SuperFusion [11] is proposed for image
registration, image fusion, and semantic segmentation tasks. To
accelerate the training procedure, Fan et al. [9] employed divide-
and-conquer strategy to divide the image into multiple patches
for training. To get rid of patches irrelevant to the foreground,
Yang et al. [12] proposed to increase the stride of the slid-
ing window to lessen the patch units. Although image-wise or
patch-wise registration is effective to capture global contextual
information or localized information respectively, each of them
is still insufficient in simultaneously perceiving deformations
with distinct complexities, which is difficult but desired when
using single-resolution registration.

1.1.2 Multi-resolution registration

Multi-resolution registration methods adopted a coarse-to-
fine strategy for global and local feature distillation, further
advancing the power of registration models in simultaneously
aligning small and large deformations. Conventional Sym-
metric Normalization (SyN) method [5] which is established
on the multi-resolution have been widely applied and inte-
grated in a variety of medical image processing toolbox [13].
Inspired by conventional multi-resolution registration, some
deep learning-based methods are proposed, including multi-
level variational image registration network [14], deep Laplacian
Pyramid Image Registration Network (LapIRN) [15] etc. How-
ever, the deformation interpolation errors which are inevitable
in multi-resolution registration will affect registration accuracy
significantly due to its propagation and accumulation, resulting
in a limited deformation alignment.

1.2 Contributions

In this study, a multi-scale complexity-aware registration net-
work (MSCAReg-Net) under the single-resolution registration
framework was proposed to automatically identify deforma-
tions with distinct complexities. The main contributions of our
work are summarized as follows:

(i) MSCAReg-Net: It was conducted by devising the multi-
scale complexity-aware module (MSCA-Module) and cas-

FIGURE 1 Illustration of small and large deformation subregions.

cading it to an upgraded U-Net block. The U-Net block,
which integrated a feature calibration module (FC-Module)
in the encoder pathway and employed a feature aggre-
gation module (FA-Module) in the skip connection, was
devised for better feature representation and deformation
learning. The FC-Module and FA-Module merged in the
U-Net block further facilitated the MSCA-Module in per-
ceiving small and large deformations by generating more
distinguishable deformation features.

(ii) MSCA-Module: Being constructed by dilated convolu-
tions and attention mechanisms, MSCA-Module is able
to capture the deformations with distinct complexities
through convolution of different receptive fields, allowing
for further optimization of the hard-to-register regions.

(iii) Diffeomorphic registration (MSCAReg-Net-diff): A dif-
feomorphic variant of MSCAReg-Net, named MSCAReg-
Net-diff, was also accomplished to guarantee the diffeo-
morphism of the deformation field.

(iv) Comprehensive assessment of registration performance
by applying it on a downstream medical image analysis
task: Typically, medical image registration is evaluated by
dice similarity coefficient (DSC) and percentage of voxels
with non-positive Jacobian determinant |J𝜙| ≤ 0 [8, 16].
Other than indices of DSC and |J𝜙| ≤ 0, we performed a
comprehensive assessment of registration performance by
applying the proposed MSCAReg-Net on multi-atlas hip-
pocampus segmentation (MAHS) to systematically explore
the interactive impact of the DSC and diffeomorphism
on subsequent medical image analysis task. Of note, the
MAHS was chosen for three reasons: ① The hippocampus
has been shown to produce large deformations in certain
subregions due to individual differences [17]. Furthermore,
the hippocampus is of dynamic alterations over progressing
from normal control (NC) through mild cognitive impair-
ment (MCI) to Alzheimer’s disease (AD) [18], resulting in a
complex small and large deformation across the hippocam-
pal subregions (Figure 1). Thus, it can provide evidence
for the proposed MSCAReg-Net in perceiving deforma-
tions with distinct complexities. ② In the MAHS, image
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YU ET AL. 841

FIGURE 2 Illustration of the proposed MSCAReg-Net architecture. The feature translation stage integrated the FC-Module and FA-Module in a U-Net block
to facilitate the feature representation. The cascaded complexity-aware stage employed the MSCA-Module to perceive small and large deformations simultaneously.
FC-Module = feature calibration module, FA-Module = feature aggregation module, MSCA-Module = multi-scale complexity-aware module.

registration of multi-atlas images to target image is a vital
step which significantly affects the subsequent segmen-
tation performance [2]. Therefore, it can be served as a
proper medial image analysis task to evaluate image regis-
tration in application. ③ As a typical medical image analysis
task, MAHS is well-known and relatively mature, where a
variety of label fusion methods including majority voting
(MV) [19], non-local patch (NLP) [20], random local binary
pattern (RLBP) [21], metric learning (ML) [22], supervised
random forests (RF) [23], and RF-SSLP [23] are established
on deformable image registration and can be employed for
a comprehensive assessment of registration performance.

The remainder of the paper is organized as follows. In Sec-
tion 2, the proposed registration method is presented. Section
3 is the experimental setup. Section 4 displays the experimental
results. In Sections 5 and 6, the discussion and conclusions are
given.

2 METHOD

2.1 Multi-scale complexity-aware
registration network (MSCAReg-Net)

2.1.1 Overview

Figure 2 illustrates the architecture of the proposed MSCAReg-
Net, which is comprised of a feature translation stage and a
complexity-aware stage. Specifically, the feature translation stage
was established on a U-Net block to translate the original image
features into deformation magnitude features by employing the

FC-Module in the contracting path and the FA-Module in the
skip connection. Both modules were to generate more con-
solidated features for the subsequent complexity-aware stage.
As for the U-Net block, the residual block (ResBlock) substi-
tuted the conventional convolution operation to enhance the
representational capacity, and tackle the gradient vanishing as
network deepening [24]. Following to the U-Net block, the
MSCA-Module in the complexity-aware stage was cascaded
and fed with the deformation magnitude features generated
in the feature translation stage, to perceive small and large
deformations simultaneously.

In the feature translation stage, U-Net [25] was employed to
translate the original image features FIF into deformation mag-
nitude feature FDMF . The feature translation function RFT (⋅)
was defined as follows:

FDMF = RFT (FIF ) (1)

In the complexity-aware stage, a group of MSCA-Modules
were designed to optimize the deformation magnitude feature
FDMF , which consisted of G = 3 MSCA-Modules. The MSCA-
Module could be used to improve the registration accuracy of
image regions with both small and large deformations

FCA = RCA (FDMF ) , (2)

where RCA(⋅) and FCA denoted the complexity-aware function
and its optimized features. Finally, FCA was fed to a 3×3×3
convolution with stride 1 to generate the deformation field
(DF)

𝜙 = RDF (FCA ) = RMSCAReg−Net (FIF ) ,
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842 YU ET AL.

FIGURE 3 Illustration of the multi-scale complexity-aware module (MSCA-Module), feature calibration module (FC-Module), and feature aggregation module
(FA-Module). 2-DConv, 3-DConv, 5-DConv and 7-DConv denote dilated convolution with dilation rates of 2, 3, 5 and 7. Conv and BN stand for convolution and
batch normalization operations.

where RDF (⋅) denotes the convolution operation used to gen-
erate the deformation field, the RMSCAReg−Net (⋅) denoted the
unified function of the proposed MSCAReg-Net.

The proposed MSCAReg-Net was carried out under the
unsupervised training setting [8]. The fixed and moving
images were concatenated into a 2-channel feature map, and
the dense deformation field was learned by optimizing the
intensity similarity and smoothing constraints. Finally, the opti-
mized deformation field was applied to spatially transform
the moving image into the warped image. In the follow-
ing, the MSCA-Module, FC-Module, and FA-Module in the
proposed MSCAReg-Net were described in detail (Figure 3).
Of note, both FC-Module and FA-Module were to facilitate
deformations feature learning of the U-Net block, further con-
solidating the identification of deformation complexity by the
MSCA-Module.

2.1.2 Multi-scale complexity-aware module
(MSCA-Module)

In the convolution procedure, the size of the receptive field
is highly associated with deformation feature representation
[26]. To leverage small and large receptive fields for identifying
deformations with distinct complexities, a common strategy is
to adopt pooling operation, which downsamples feature maps
to attain receptive fields in different sizes. However, succes-

sive pooling operations will lose precise spatial positions in the
feature map, which is not a good practice for medical image
registration tasks. This motivates us to design a new module to
achieve receptive fields in different sizes.

Inspired by [27, 28], the MSCA-Module in Figure 3 was
devised to be aware of deformations with distinct complexi-
ties by combining a trunk branch, a mask branch, and a feature
source-shared skip connection. The trunk branch was to iden-
tify deformations with distinct complexities. The mask branch
was to construct the identity mapping. The feature source-
shared skip connection was akin to the idea in residual learning
[24], which alleviated gradient vanishing and stabilized training
processing.

In our study, a total of G = 3 MSCA-Modules were cascaded
in the complexity-aware stage, and the g-th MSCA-Module was
formulated as

Fg = RC (Fg−1) + RMA(M (RC (Fg−1)), T (RC (Fg−1))), (4)

where Fg−1 and Fg represented the input and output of the
g-th MSCA-Module. RC (⋅) was a composite operation of con-
volution, batch normalization (BN), and ReLU function [29]
in the beginning of the MSCA-Module, and fed to the subse-
quent mask branch, trunk branch, and the feature source-shared
skip connection. Besides, T(⋅) and M(⋅) were the functions
of the trunk branch and the mask branch, and the outputs
of them were integrated by a composite multiplication and
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YU ET AL. 843

addition operation RMA(⋅, ⋅). The output of RMA(⋅) was then
added with the output of RC (⋅) by the feature source-shared
skip connection, generating the final output Fg of the g-th
MSCA-Module.

In the trunk branch, the dilated convolutions with dilation
rates of 2, 3, 5 and 7 were defined to capture the deformations
with distinct complexities, thereby generating feature maps with
different deformation magnitudes. The trunk branch T(⋅) was
formulated as

F r
g = T (RC (Fg−1)) = RBN (Rr−DConv (RC (Fg−1)))

(r = 2, 3, 5, 7), (5)

where RBN (⋅) was BN operation, Rr−DConv (⋅) denoted the
dilated convolution with dilation rate r. RC (⋅) was a compos-
ite operation of convolution, BN, and ReLU function in the
beginning of the MSCA-Module and fed to the trunk branch.

In the mask branch, the attention matrices (Λ1, Λ2, Λ3, and
Λ4) were learned and multiplied with feature maps of F r

g (r = 2,
3, 5, 7). The mask branch M(⋅) was formulated as

Λi = M (RC (Fg−1)) = f (RCR(RC (Fg−1)))(i = 1, 2, 3, 4), (6)

where RCR (⋅) were convolution and ReLU operations, f(⋅) was a
sigmoid gating operation. RC (⋅) was a composite operation of
convolution, BN, and ReLU function in the beginning of the
MSCA-Module and fed to the mask branch.

Since image regions with large deformations are often diffi-
cult to align [17], the FC-Module and FA-Module were devised
in the feature translation stage to strengthen the deforma-
tion representation ability of the U-Net block, thereby further
enhancing the ability of MSCA-Module in perceiving complex
deformations (Figure 2).

2.1.3 Feature calibration module (FC-Module)

In the feature translation stage, successive pooling operations
in the encoder lose precise voxel position information, result-
ing in representation biases of deformation features. Herein,
the FC-Module defined as follows was devised and cascaded
in the encoder pathway to calibrate the representation bias of
deformation (Figure 3) [30]. The FC-Module was formulated as

FCout = RRB((1 + M (RRB(FCin ))) ⋅ T (RRB(FCin ))) (7)

The FC-Module was initiated with a ResBlock formulated
as RRB (FCin ), where FCin was the input of the FC-Module.
The generated features were then fed to the following trunk
branch T(⋅) and mask branch M(⋅) to obtain the characterized
deformation features F T = T (RRB (FCin )) and to construct the
attention mapping 𝜂 = M (RRB (FCin )), respectively. Through a
feature source-shared skip connection, the multiplication of
deformation features F T and attention mapping 𝜂 was then
added again with deformation features F T . The attention map-
ping 𝜂 can effectively distinguish deformations with distinct

complexities [17], which facilitates specific optimization of large
and small deformations in the deformation feature F T . Finally,
the output features of the FC-Module FCout were generated by
applying a ResBlock operation RRB (⋅) [31].

In the trunk branch, the original deformation features are
learned by two residual blocks [24]. In the mask branch,
high-level features are extracted by using the encoder-decoder
architecture [25] to generate the attention mapping 𝜂, and the
attention mapping was to boost beneficial features and sup-
press irrelevant features when multiplied with the deformation
features F T from trunk branch. Specifically, the encoder-
decoder architecture is composed of ResBlock, Max-pooling,
Up-sampling, and two 1×1×1 convolution layers, and finally
passed through a sigmoid gating operation to generate the
attention mapping 𝜂. Of note, the encoder-decoder architec-
ture employed in the mask branch was adjustable in term of
parameter l according to the feature level it would be placed
in the encoder pathway. The parameter l determined the depth
of the encoder-decoder architecture in the mask branch. In the
FC-Module, the parameter l was set to 3 according to the fea-
ture level in the encoder pathway that the FC-Module inserted
(Figure 2). In the following FA-Module which adopted multi-
ple FC-Modules at different feature levels for skip connection,
the parameter l was set 4, 3, 2 and 1 to satisfy the semantic gap
between encoder and decoder pathways.

2.1.4 Feature aggregation module (FA-Module)

In the feature translation stage, the feature map in the encoder
was proximate to the original image. In contrary, the feature
map in the decoder was adjacent to the deformation field.
This led to a large semantic gap [9] that demanded feature
aggregation between encoder and encoder pathways. Herein,
the FA-Module (Figure 3), established on dilated convolution
and FC-Modules, was integrated into the skip connections of
the encoder-decoder block in Figure 2 to aggregate the feature
maps at different levels and alleviate the semantic gap between
encoder and encoder pathways [30]. In the FA-Module, the
dilated convolution with a same dilation rate of 2 was adopted,
but the number of the dilated convolutions was determined by
the feature level in the skip connection. In our study, a total of
10 dilated convolutions was employed in the FA-Module. Due
to the gradual reduction of semantic gap with the features going
deeper, the amount of dilated convolution decreases from 4 to
1 accordingly. Also, the followed FC-Modules adopted at dif-
ferent levels assigned parameter l = 4, 3, 2 and 1 as mentioned
above with the features going deeper.

2.1.5 Loss function

To attain the deformation field 𝜙, the following energy function
was optimized by maximizing the following formulation:

𝜙 = argmax
𝜙

Sim(IF , IM◦𝜙) + Reg(𝜙), (8)
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844 YU ET AL.

where Sim(IF, IM◦𝜙) defined the similarity between the fixed
image IF and the warped image IM◦𝜙. Reg(𝜙) refers to the
regularization of the deformation field for preserving the
smoothness of 𝜙. In our study, normalized cross correlation
(NCC) [7] was adopted as a similarity metric, which calculated
the spatial gradients to assess the smoothness of the defor-
mation field. Therefore, the loss function for the proposed
MSCAReg-Net was defined as follows:

L(IF, IM, 𝜙) = −NCC(IF, IM◦𝜙) + 𝜆‖∇𝜙(p)‖2, (9)

where 𝜆 controls the balance between image align-
ment and deformation field smoothness. Specifically, for

∇𝜙(p) = (
𝜕𝜙(p)

𝜕x
,
𝜕𝜙(p)

𝜕y
,
𝜕𝜙(p)

𝜕z
), we approximate

𝜕𝜙(p)

𝜕x
≈

𝜙((px + 1, py, pz )) − 𝜙((px , py, pz )), and use similar

approximations for
𝜕𝜙(p)

𝜕y
and

𝜕𝜙(p)

𝜕z
.

2.2 Diffeomorphic deformation
(MSCAReg-Net-diff)

In medical image registration, topology preservation and
transformation invertibility are critical properties, called diffeo-
morphism. The diffeomorphism is a smooth and continuous
one-to-one mapping with invertible derivatives (i.e. non-
zero Jacobian determinant). In this study, we parameterized
the MSCAReg-Net into a diffeomorphic deformation variant
(MSCAReg-Net-diff) using the stationary velocity field under
the Log-Euclidean framework. The MSCAReg-Net-diff was
optimized within the space of diffeomorphic maps. Specifically,

the diffeomorphic deformation field 𝜙 was defined as
d𝜙t

dt
=

𝜐(𝜙t ), subject to 𝜙(0) = Id was the identity transformation and
t was time. The integration of the (smooth) stationary velocity
field 𝜐 was implemented over unit time to obtain the final regis-
tration field. Details of the deformation diffeomorphism can be
found in the study [16].

2.3 Comprehensive assessment of
registration performance by applying on a latter
medical image analysis task

DSC and |J𝜙| ≤ 0 have been widely used to evaluate the
registration performance. For instance, Balakrishnan et al. [8]
developed a CNN-based unsupervised registration algorithm
VoxelMorph, which used DSC to evaluate the registration accu-
racy. Dalca et al. [16] introduced a diffeomorphic integration
layer to ensure a diffeomorphism in the deformation, and used
|J𝜙| ≤ 0 to evaluate diffeomorphism. Mok et al. [32] demon-
strated that DSC and |J𝜙| ≤ 0 were highly interactive during
registration, that is, one rose as the other fell. However, many
studies typically improve DSC on the premise of ensuring nearly
zero |J𝜙| ≤ 0. This raises a new question: How to balance the
indices of DSC and |J𝜙| ≤ 0 when evaluating the deformable

registration methods particularly in the following medical image
analysis tasks?

To investigate this, we conducted a comprehensive assess-
ment of the registration performance not only by the DSC,
|J𝜙| ≤ 0, and average running time in seconds (Time) but also
applying on a latter medical image analysis task of MAHS.
Specifically, seven MAHS methods were employed, including
MV [19], NLP [20], RLBP [21], ML [22], RF [23] and RF-SSLP
[23]. The parameters associated with the above MAHS methods
were set as suggested in each individual study. In addition, nine
metrics were used to evaluate the hippocampus segmentation as
follows [23]. Given manual segmentation label A and the auto-
mated segmentation result B, these metrics were calculated as:

DSC =
2V(A ∩ B)

V(A) + V(B)
, Jaccard =

V(A ∩ B)
V(A ∪ B)

,

Precision =
V(A ∩ B)

V(B)
, Recall =

V(A ∩ B)
V(A)

,

MD = mean
e∈𝜕A

( min
f ∈𝜕B

d (e, f )),

HD = max(H(A,B),H(B,A)), where,

H(A,B) = max
e∈𝜕A

( min
f ∈𝜕B

d (e, f )),

ASSD = (mean
e∈𝜕A

( min
f ∈𝜕B

d (e, f )) + mean
e∈𝜕B

( min
f ∈𝜕A

d (e, f )) ∕ 2,

RMSD =

√
D2

A+D2
B

card{𝜕A}+card{𝜕B}
,

where D2
A = �e∈𝜕A( min

f ∈𝜕B
d (e, f )).

In the above metrics, d(⋅, ⋅) was the Euclidian distance
between two points, card{⋅} was the cardinality of a set.

3 EXPERIMENTAL SETTINGS

3.1 Data and pre-processing

A total of 135 subjects with brain structural MR images and
manual hippocampal segmentation labels were obtained from
the ADNI-Harp project (www.hippocampal-protocol.net) [33],
including 100 subjects from a preliminary release and 35 sub-
jects from a final release. Of the preliminary release, two
subjects (002_S_0938, 127_S_0259) missed manual segmen-
tation labels at several slices and were excluded. Finally, we
obtained 133 subjects, of which, the preliminary release data
were split into a training set (80 subjects) and a validation set
(18 subjects), the final release data (35 subjects) were served as
a testing set.

For each MR scan, we performed the N4 correction and
affined registration to the Montreal Neurological Institute
(MNI) 152 space (1×1×1 mm3) with the Advanced Nor-
malization Tools (ANTs) (www.github.com/ANTsX/ANTs)
[13]. After aligning to the MNI 152 space, a bounding box
(60×60×48) entirely covering the hippocampus was defined to
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YU ET AL. 845

reduce the computational complexity [34]. The hippocampus
registration was performed on the hippocampus patch (the
above bounding box sized of 60×60×48), which was same as
the registration step adopted in MAHS methods for subsequent
comparison.

Since data augmentation could enhance deep learning model,
it was also adopted in this study as follows:

(i) For each subject, the right hippocampus was flipped
into the left due to the spatial similarity of the bilateral
hippocampus.

(ii) In the training and validation sets, the fixed image and mov-
ing image were selected with an n×(n−1) strategy in the
left or flipped right hippocampus separately. This procedure
generated 80×79×2 = 12,640 pairs and 18×17×2 = 612
pairs of images for training and validating the MSCAReg-
Net. In the test set, the same mutual information (MI) as
adopted in MAHS was employed for atlas selection and to
pair the test data for a fair comparison on the segmentation
performance. Specifically, each left or right hippocampus
(fixed images) selected 20 atlases (moving images) accord-
ing to the MI value, generating 35×20×2 = 1400 pairs of
images for testing.

3.2 Baseline methods

In this study, the following baseline methods were employed for
comparison:

(i) One conventional registration method SyN [5]: SyN utilizes
a 3-level multi-resolution strategy to capture deformations
with distinct complexities, which has been demonstrated
with the top-performing registration performance among
14 classical non-linear deformation algorithms [35]. In
our study, the SyN was implemented with following com-
mand: ANTS 3 -m CC[fixed,moving,1,2] -t SyN[0.25] -r
Gauss[3,0] -o output -i 100×100×10 –number-of-affine-
iterations 100×100×100 [23].

(ii) Four deep learning-based single-resolution methods: Vox-
elMorph [8], diffeomorphic variant VoxelMorph-diff [16],
SymTrans [36], and SymTrans-diff [36].

(iii) Two deep learning-based multi-resolution methods:
LapIRN and diffeomorphic variant LapIRN-diff [15].

For deep learning-based methods, the official open-source
implementation with default parameters was employed for
training from the scratch.

3.3 Implementation details of proposed
MSCAReg-Net

The proposed MSCAReg-Net was implemented using Pytorch
on a single Nvidia GeForce RTX 2080 Ti GPU, which was opti-
mized by the AdamW optimizer with a learning rate = 1×10−4,
mini-batch size 4, 𝜆 = 1, and 316k iterations.

4 RESULTS

In this section, we (1) demonstrated the effectiveness of
the complexity-aware technique in improving registration per-
formance in Section 4.1; (2) compared the registration per-
formance of MSCAReg-Net and its diffeomorphic variant
MSCAReg-Net-diff with baseline methods in Section 4.2; (3)
performed a comprehensive evaluation of the proposed regis-
tration model by applying it on the subsequent medical image
analysis task of MSHS in Section 4.3.

4.1 The effectiveness of the proposed
complexity-aware technique

To validate the effectiveness of the complexity-aware technique
in perceiving deformations with distinct complexities, we com-
pared the proposed MSCAReg-Net with its two alternatives as
follows:

(i) MSCAReg-Net-1: The U-Net block in Figure 2 but without
MSCA-Module, FC-Module and FA-Module.

(ii) MSCAReg-Net-2: The U-Net block in Figure 2 solely with
MSCA-Module, which was to demonstrate the effective-
ness of the proposed complexity-aware technique.

(iii) MSCAReg-Net: The proposed MSCAReg-Net with
MSCA-Module, FC-Module and FA-Module simulta-
neously, which was to demonstrate the contribution of
FC-Module and FA-Module in enhancing MSCA-Module
in identifying large deformations.

Table 1 summarizes the registration results of left and right
hippocampus by comparing MSCAReg-Net-1, MSCAReg-Net-
2 and the proposed MSCAReg-Net, indicating that the absence
of the designed modules results in lower DSC. Comparing
MSCAReg-Net-2 versus MSCAReg-Net-1, the MSCA-Module
was demonstrated in improving registration by the complexity-
aware technique. Comparing with the MSCAReg-Net-2, the
proposed MSCAReg-Net achieved the best performance since
the FC-Module and FA-Module facilitated the complexity-
aware technique established on MSCA-Module in identifying
both small and large deformations.

Figure 4 visualized the advances of the complexity-aware
technique by illustrating the corresponding features maps of
deformation magnitude. Based on two paired images with
large spatial and morphological differences in Figure 4a, Figure
4b,d compared the final output of deformation feature maps
generated by the MSCAReg-Net-1 above and the proposed
MSCAReg-Net. The high and low values in the features
maps correspond to large and small deformation magnitude.
The experimental results demonstrated the superiority of the
complexity-aware technique in precisely characterizing large
and small deformations simultaneously. Figure 4c displayed
the deformation feature maps generated by multiplying mask
branch and trunk branch in the MSCA-Module, demonstrating
the ability of the MSCA-Module in capturing small and large
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TABLE 1 The DSC, |J𝜙| ≤ 0, and time (mean ± std) computed over left and right hippocampus using the proposed MSCAReg-Net and its alternatives.

Left hippocampus Right hippocampus

DSC |J𝝓| ≤ 0 (%) Time DSC |J𝝓| ≤ 0 (%) Time

MSCAReg-Net-1 0.768 ± 0.06 1.774 ± 0.50 0.023 ± 0.00 0.781 ± 0.04 1.646 ± 0.42 0.023 ± 0.00

MSCAReg-Net-2 0.782 ± 0.06 1.793 ± 0.49 0.106 ± 0.02 0.794 ± 0.04 1.665 ± 0.41 0.106 ± 0.02

MSCAReg-Net 0.790 ± 0.05 1.681 ± 0.48 0.103 ± 0.00 0.802 ± 0.04 1.549 ± 0.38 0.104 ± 0.00

FIGURE 4 Illustration of the effectiveness of the MSCA-Module in identifying the deformation with distinct complexities. (a) Input image pair. (b) The feature
map of deformation magnitude is derived from the sole U-Net block defined as MSCAReg-Net-1. (c) The feature maps of deformation magnitude are obtained by
multiplying mask branch and trunk branch in the MSCA-Module. (d) The feature maps of deformation magnitude generated by MSCA-Module in the proposed
MSCAReg-Net.

deformations by employing dilated convolutions with different
dilation rates.

Figure 5 compared the feature maps of the MSCAReg-Net
generated from the encoder pathway. When the MSCAReg-
Net-1 was adopted, the feature map generated in the encoder
pathway was exhibited in Figure 5b, indicating an insuffi-
cient representation of deformation features. In the proposed
MSCAReg-Net, the feature map in Figure 5d generated after
the FC-Module in the encoder pathway captured large and small
deformations more precisely. The attention map 𝜂 from the
mask branch of the FC-Module was also exhibited in Figure 5c.

Figure 6 illustrated the training process in terms of NCC loss
on training dataset and DSC on validation dataset. Comparing
with MSCAReg-Net-1 and MSCAReg-Net-2 defined above, the
proposed MSCAReg-Net achieved a more rapid convergence,
lower loss value, and higher DSC, which benefited comprehen-

sively from the MSCA-Module, FC-Module, and FA-Module in
the deformable image registration task.

4.2 Comparison with baseline methods

The experimental comparison between the proposed
MSCAReg-Net and baseline methods were summarized in
Table 2. The deep learning-based single-resolution registra-
tion method of VoxelMorph and its diffeomorphic variant
VoxelMorph-diff achieved relatively low DSC, indicating the
difficulty of the single-resolution registration framework in
capturing deformation with distinct complexities. Besides, the
Transformer-based registration method SymTrans has a slight
improvement in terms of DSC compared with VoxelMorph,
but is lower than MSCAReg-Net, which is still limited to the
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YU ET AL. 847

FIGURE 5 Comparison of feature maps generated in the encoder pathway. (a) Input image pair. (b) The feature map of deformation magnitude generated
from the encoder pathway of the MSCAReg-Net-1. (c) The attention map 𝜂 derived from the mask branch of the FC-Module in the proposed MSCAReg-Net. (d)
The deformation magnitude map FCout generated from the encoder pathway of the proposed MSCAReg-Net.

TABLE 2 The indices of DSC, |J𝜙| ≤ 0, and time computed over left and right hippocampus of the different registration methods.

Left hippocampus Right hippocampus

DSC |J𝝓| ≤ 0 (%) Time DSC |J𝝓| ≤ 0 (%) Time

Affine 0.489 ± 0.12 – – 0.522 ± 0.10 – –

SyN 0.787 ± 0.07 0.304 ± 0.17 18.03 ± 2.82 0.796 ± 0.05 0.278 ± 0.15 18.18 ± 2.45

VoxelMorph 0.739 ± 0.07 0.701 ± 0.33 0.016 ± 0.00 0.757 ± 0.05 0.650 ± 0.26 0.016 ± 0.00

VoxelMorph-diff 0.733 ± 0.07 0.362 ± 0.34 0.031 ± 0.00 0.750 ± 0.05 0.320 ± 0.28 0.031 ± 0.00

SymTrans 0.746 ± 0.07 0.641 ± 0.32 0.030 ± 0.00 0.765 ± 0.05 0.579 ± 0.24 0.026 ± 0.00

SymTrans-diff 0.747 ± 0.07 0.956 ± 0.37 0.020 ± 0.00 0.764 ± 0.05 0.878 ± 0.29 0.021 ± 0.00

LapIRN 0.764 ± 0.06 4.435 ± 1.44 0.011 ± 0.00 0.780 ± 0.04 4.540 ± 1.43 0.012 ± 0.00

LapIRN-diff 0.711 ± 0.08 0.240 ± 0.24 0.014 ± 0.00 0.733 ± 0.06 0.260 ± 0.25 0.015 ± 0.00

MSCAReg-Net 0.790 ± 0.05 1.681 ± 0.48 0.103 ± 0.00 0.802 ± 0.04 1.549 ± 0.38 0.104 ± 0.00

MSCAReg-Net-diff 0.781 ± 0.06 1.255 ± 0.63 0.109 ± 0.00 0.794 ± 0.04 1.081 ± 0.49 0.110 ± 0.00

Affine: Affine spatial normalization.

FIGURE 6 Convergence analysis of the training stage of MSCAReg-Net
and its alternatives in term of (left) NCC loss and (right) validation DSC.

single-resolution registration framework. The LapIRN under
comparison improved the registration performance by adopting
a deep learning-based multi-resolution framework to character-
ize both large and small deformations, but the performance of
its diffeomorphic variant LapIRN decreased sharply.

Despite the complex computation, the conventional regis-
tration method of SyN which indeed took a multi-resolution
strategy in its implementation achieved a relatively high value of
DSC and low value of |J𝜙| ≤ 0, exhibiting a stable and superior
performance over VoxelMorph and LapIRN under comparison.
Based on the comprehensive comparison with the conventional
registration method of SyN, the deep learning-based Voxel-
Morph, and LapIRN, the proposed MSCAReg-Net achieved the
highest DSC value and a moderate value of |J𝜙| ≤ 0, demon-
strating the effectiveness of the complexity-aware technique
under the single-resolution registration framework in promot-
ing deformable image registration. The 2D and 3D visualized
comparison was also exhibited in Figure 7.

In this study, the proposed method achieves an advanced
DSC over SyN from Table 2 but the value of |J𝜙| ≤ 0 between
MSCAReg-Net and SyN exhibits a gap. Therefore, the com-
parison of the application of the registration methods on the
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848 YU ET AL.

FIGURE 7 Example registration results given by SyN, VoxelMorph, VoxelMorph-diff, LapIRN, LapIRN-diff, SymTrans, SymTrans-diff, MSCAReg-Net and
MSCAReg-Net-diff. Blue: hand-crafted segmentation, Green: automatic segmentation, Red: overlap between hand-crafted and automatic segmentations.

following medical image analysis task is essential. Therefore, we
conducted the following experiments by applying the registra-
tion methods under comparison on the subsequent MAHS task
to further assess the proposed MSCAReg-Net.

4.3 Applying the MSCAReg-Net on the
subsequent multi-atlas hippocampus
segmentation task

Table 3 summarizes the left and right hippocampus segmen-
tation results by MAHS framework established on different
registration methods. Since the MV segmentation method
was directly derived from the wrapped masks of multi-atlas
images, the MV segmentation result could directly reflect the
DSC performance of registration methods. From Table 2, our
MSCAReg-Net achieved the best DSC values over other regis-
tration methods, therefore the MV method established on the
MSCAReg-Net also obtained the best performance on left and
right hippocampus segmentation (Table 3).

For other label fusion methods such as NLP, RLBP, ML,
RF and RF-SSLP, they were implemented on a narrowband
which was generated by the MV method. Of note that the
establishment of the narrowband would affect the subsequent
label fusion result greatly. From Table 3, we can find that most
diffeomorphic variants of the deep learning-based registration
methods (i.e. VoxelMorph-diff, SymTrans-diff and MSCAReg-
Net-diff) achieved superior segmentations of hippocampus over
their raw version (i.e. VoxelMorph, SymTrans and MSCAReg-
Net), demonstrating the positive role of diffeomorphism in

stabilizing the narrowband. Figure 8 displayed the narrowband
established on different registration methods. The VoxelMorph,
LapIRN and MSCAReg-Net exhibited outliers when conduc-
ing the narrowband, while the outliers were not found on their
diffeomorphic variants.

Besides, the proposed MSCAReg-Net-diff achieved a com-
petitive performance on the registration and subsequent
segmentation task with the conventional but well-performing
SyN method. The proposed method achieved an advanced
DSC but a relative high |J𝜙| ≤ 0 over SyN, but the fol-
lowing hippocampus segmentation performance exhibited
comparable. On the left hippocampus from Table 3, the SyN
method resulted in slightly better segmentations on most label
fusion methods. On the right hippocampus from Table 3,
the proposed MSCAReg-Net-diff resulted in slightly better
segmentation. Both MSCAReg-Net-diff and SyN led to better
segmentations over other registration methods (Table 3). It
indicated that although slightly high |J𝜙| ≤ 0 in the proposed
MSCAReg-Net-diff, the advanced DSC performance over SyN
could still help generate competitive segmentation results. The
balance between the DSC and |J𝜙| ≤ 0 values could only be
validated on the following medical image analysis task. Solely
boosting the DSC value or decreasing the |J𝜙| ≤ 0 might not
be approximate in devising deformable registration models.

5 DISCUSSION

In the present study, a multi-scale complexity-aware net-
work defined as MSCAReg-Net was proposed under the
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FIGURE 8 Example narrowband established by MV method but on different registration models. The regions with outliers on the narrowband are pointed out
by white arrows.

single-resolution registration framework by devising the FC-
Module, FA-Module and MSCA-Module. The FC-Module
and FA-Module merged in the U-Net block facilitated the
MSCA-Module in perceiving small and large deformations by
generating more distinguishable features. The diffeomorphic
variant MSCAReg-Net-diff was also devised to guarantee the
diffeomorphism of the deformation field. Experimental results
indicated that the proposed complexity-aware technique in the
proposed MSCAReg-Net outperformed the conventional SyN,
deep learning-based VoxelMorph and LapIRN in terms of
registration accuracy. The registration methods under com-
parisons were also applied on a downstream medical image
analysis task of MAHS. Experimental results demonstrated that
both MSCAReg-Net-diff and SyN achieved better hippocam-
pus segmentations over other registration methods (Table 3),
and the proposed MSCAReg-Net-diff contributed to a compet-
itive performance on the hippocampus segmentation with the
conventional but best-performing SyN method.

5.1 Registration network architecture and
framework

The size of the receptive field is highly associated with the
identification of deformation complexity, and simultaneously
perceiving deformations with distinct complexities can signif-
icantly improve the registration performance [26], [17]. To
investigate this, the MSCA-Module was devised to achieve dif-
ferent receptive fields by defining dilated convolutions with
different dilation rates, thereby facilitating representation learn-
ing for deformations with distinct complexities. Besides, the
dilated convolution could effectively avoid the loss of precise
position information of each voxel caused by pooling oper-
ation. The deformation magnitude maps in Figure 4 showed
that small receptive field was beneficial to characterize local
subtle deformation, whereas large receptive field provides
more spatial information to learn regions with large posi-
tional bias. Furthermore, the deformation magnitude maps with
(Figure 4d) and without (Figure 4b) MSCA-Module showed that
the complexity-aware technique is beneficial for representation

learning of deformations with distinct complexities. The DSC
scores in Table 1 indicated that the MSCA-Module could signif-
icantly improve the registration performance. It well proved that
the complexity-aware technique could simultaneously and effec-
tively perceive deformations with distinct complexities under
single-resolution registration framework.

The improvement of registration performance was often lim-
ited by the representation capability of the deformation features.
Conventional U-Net was typically used in image registration
algorithms to learn deformation features [8]. However, the
deformation representation capability of conventional U-Net
was insufficient, and the semantic gap of feature aggregation
between encoder and decoder was also a fatal defect in regis-
tration tasks [9]. Considering the above problems, FC-Module
was designed to calibrate the representation weights of defor-
mations with distinct complexities, thereby consolidating the
identification ability of MSCA-Module for displacement fea-
tures. The attention map 𝜂 in Figure 5 showed that FC-Module
could identify regions with large spatial position difference
between fixed image and moving image. Furthermore, FA-
Module was akin to the gap-fill mechanism [9], which effectively
alleviated the semantic gap of feature aggregation. The results
in Table 1 also demonstrated that facilitating the representa-
tion ability of U-Net in terms of deformation complexity could
effectively improve registration accuracy.

Besides, this study demonstrated that a single-resolution
registration framework integrating complexity-aware tech-
niques was also capable of simultaneously perceiving both
small and large deformations. The single-resolution registration
framework can avoid the interpolation error and huge memory
consumption of the multi-resolution registration framework,
further highlighting its usability and scalability in image regis-
tration. It is noteworthy that the complexity-aware technique
effectively alleviated the difficulty of the single-resolution
registration framework in aligning image regions with large
deformations (Table 1, Figures 4, and 5), and can be easily
extended to whole brain imaging. Furthermore, our method
outperformed existing single- and multi-resolution registra-
tion methods (especially the best-performing conventional
method SyN) in terms of registration accuracy, highlighting the
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superiority of the single-resolution registration framework inte-
grating complexity-aware techniques. Although the runtime of
the deep learning-based baseline methods is slightly faster than
the proposed MSCAReg-Net, they sacrifice more registration
accuracy. Specifically, the average runtime of MSCAReg-Net
over left and right hippocampus is 0.104 s, which is only
0.088, 0.076 and 0.092 s slower than VoxelMorph, SymTrans
and LapIRN, respectively, but the registration accuracy of
MSCAReg-Net is significantly improved by a margin of 6.4%,
5.3% and 3.1% of DSC, respectively. Importantly, the runtime
of all deep learning-based registration methods does not exceed
1 s.

5.2 Further evaluation of registration in
subsequent applications

Application comparisons of registration in subsequent medical
image analysis tasks are essential. To the best of our knowledge,
we are the first to apply the registration algorithm into sub-
sequent applications to evaluate the registration performance.
Previous registration studies have typically used metrics such as
DSC and |J𝜙| ≤ 0 to evaluate registration performance [8], [16].
In this study, the registration algorithm was comprehensively
evaluated by employing a MAHS application. The segmenta-
tion results in Table 3 showed that the proposed MSCAReg-Net
and MSCAReg-Net-diff contributed to a better hippocam-
pus segmentation over other deep learning-based single- or
multi-resolution registration methods under comparison, and a
comparable segmentation performance with the conventional
but leading SyN method.

Although the registration accuracy (such as DSC) and
diffeomorphism (such as |J𝜙| ≤ 0) reflect the registration per-
formance in different aspects, their priorities may be dependent
on different applications. Regarding the hippocampus segmen-
tation, MSCAReg-Net contributed to the best hippocampus
segmentation by the MV method since the MV method was
solely and highly independent on the registration accuracy
of DSC. However, the other label fusion methods such as
NLP, RLBP, ML, RF, and RF-SSLP achieved the best seg-
mentation based on the diffeomorphic variants (Table 3),
demonstrating the diffeomorphism could help stabilize the
establishment of the narrowband, further facilitating the sub-
sequent segmentation. The narrowband visualization results
in Figure 8 showed that the narrowband established by the
registration method without diffeomorphism had more out-
liers, highlighting the positive role of diffeomorphism in terms
of stabilizing the narrowband. Besides, the proposed method
achieved an advanced DSC but a relative high |J𝜙| ≤ 0 than
SyN, but the following hippocampus segmentation exhibited
a comparable performance, demonstrating the increase of the
registration accuracy of DSC could help offset the increase
of the |J𝜙| ≤ 0 in segmentation to some extent as long as
the registration performance of the diffeomorphic variant did
not decreased sharply such as LapIRN-diff (Table 2). There-
fore, the balance between the DSC and |J𝜙| ≤ 0 values need
to be validated on the following medical image analysis task.

Solely boosting the DSC value or decreasing the |J𝜙| ≤ 0
might not be approximate in devising deformable registration
algorithms.

5.3 Limitation

Although the priority between DSC and |J𝜙| ≤ 0 was discussed
in this study using MAHS as an example, a further investigation
is still needed in more and various medical applications. How-
ever, it needs to be pointed out that further exploration of the
balance between DSC and |J𝜙| ≤ 0 need to be established on
relatively mature medical image analysis tasks such as MAHS
adopted in this study. As mentioned before, it might be not
a good choice when image registration is not a vital step and
cannot greatly affect the latter medical image analysis task.

6 CONCLUSION

In the present study, a multi-scale complexity-aware net-
work defined as MSCAReg-Net was proposed under the
single-resolution registration framework, demonstrating the
effectiveness of the complexity-aware technique in promot-
ing deformable image registration. Specifically, the FC-Module
and the FA-Module were devised and integrated into a U-
Net block to promote learning of deformation magnitude
features in the feature translation stage. In the subsequent
complexity-aware stage, the MSCA-Module which was estab-
lished on the complexity-aware technique and the optimized
deformation features generated by the FC-Module and the FA-
Module, was cascaded to perceive small and large deformations
simultaneously. The diffeomorphic variant MSCAReg-Net-diff
was also accomplished to ensure the deformation diffeomor-
phism. Experimental results demonstrated the superiority of the
proposed MSCAReg-Net over the existing single- and multi-
resolution registration methods (especially the best-performing
SyN) in terms of registration accuracy. Besides, other than
the indices of DSC and |J𝜙| ≤ 0, a comprehensive evaluation
of the registration performance was carried out by applying
the MSCAReg-Net on a latter medical image analysis task of
MAHS. Experimental results demonstrated that the proposed
MSCAReg-Net and MSCAReg-Net-diff contributed to a bet-
ter hippocampus segmentation over other deep learning-based
single- or multi-resolution registration methods under compar-
ison, and a comparable segmentation performance with the
conventional but leading SyN method. The comprehensive
assessment including DSC, |J𝜙| ≤ 0, and the latter applica-
tion on a specific medical image analysis task demonstrated
the advances of the proposed MSCAReg-Net in medical image
deformation registration.
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