ISS - Institut für Softwaresysteme in Wirtschaft, Umwelt und Verwaltung
Filtern
Dokumenttyp
Sprache
- Englisch (6)
Volltext vorhanden
- ja (6)
Gehört zur Bibliographie
- nein (6)
Schlagworte
- Green-IT (2)
- Künstliche Intelligenz (2)
- Maschinelles Lernen (2)
- Nachhaltigkeit (2)
- Software (2)
- machine learning (2)
- App <Programm> (1)
- Autonomer Roboter (1)
- Cyber-physisches System (1)
- Docker (1)
Digital transformation is both an opportunity and a challenge. To take advantage of this opportunity for humans and the environment, the transformation process must be understood as a design process that affects almost all areas of life. In this paper, we investigate AI-Based Self-Adaptive Cyber-Physical Process Systems (AI-CPPS) as an extension of the traditional CPS view. As contribution, we present a framework that addresses challenges that arise from recent literature. The aim of the AI-CPPS framework is to enable an adaptive integration of IoT environments with higher-level process-oriented systems. In addition, the framework integrates humans as actors into the system, which is often neglected by recent related approaches. The framework consists of three layers, i.e., processes, semantic modeling, and systems and actors, and we describe for each layer challenges and solution outlines for application. We also address the requirement to enable the integration of new networked devices under the premise of a targeted process that is optimally designed for humans, while profitably integrating AI and IoT. It is expected that AI-CPPS can contribute significantly to increasing sustainability and quality of life and offer solutions to pressing problems such as environmental protection, mobility, or demographic change. Thus, it is all the more important that the systems themselves do not become a driver of resource consumption.
Sustainable software products - Towards assessment criteria for resource and energy efficiency
(2018)
Many authors have proposed criteria to assess the “environmental friendliness” or “sustainability” of software products. However, a causal model that links observable properties of a software product to conditions of it being green or (more general) sustainable is still missing. Such a causal model is necessary because software products are intangible goods and, as such, only have indirect effects on the physical world. In particular, software products are not subject to any wear and tear, they can be copied without great effort, and generate no waste or emissions when being disposed of. Viewed in isolation, software seems to be a perfectly sustainable type of product. In real life, however, software products with the same or similar functionality can differ substantially in the burden they place on natural resources, especially if the sequence of released versions and resulting hardware obsolescence is taken into account. In this article, we present a model describing the causal chains from software products to their impacts on natural resources, including energy sources, from a life-cycle perspective. We focus on (i) the demands of software for hardware capacities (local, remote, and in the connecting network) and the resulting hardware energy demand, (ii) the expectations of users regarding such demands and how these affect hardware operating life, and (iii) the autonomy of users in managing their software use with regard to resource efficiency. We propose a hierarchical set of criteria and indicators to assess these impacts. We demonstrate the application of this set of criteria, including the definition of standard usage scenarios for chosen categories of software products. We further discuss the practicability of this type of assessment, its acceptability for several stakeholders and potential consequences for the eco-labeling of software products and sustainable software design.
Internet of Things (IoT) and Artificial Intelligence (AI) are one of the most promising and disruptive areas of current research and development. However, these areas require deep knowledge in multiple disciplines such as sensors, protocols, embedded programming, distributed systems, statistics and algorithms. This broad knowledge is not easy to acquire and the software used to design these systems is becoming increasingly complex. Small and medium-sized enterprises therefore have problems in developing new business ideas. However, node- and block-based software tools have also been released and are freely available as open source toolboxes. In this paper, we present an overview of multiple node- and block-based software tools to develop IoT- and AI-based business ideas. We arrange these tools according their capabilities and further propose extension and combinations of tools to design a useful open-source library for small and medium-sized enterprises, that is easy to use and helps with rapid prototyping, enabling new business ideas to be developed using distributed computing.
Online Learning algorithms and Indoor Positioning Systems are complex applications in the environment of cyber-physical systems. These distributed systems are created by networking intelligent machines and autonomous robots on the Internet of Things using embedded systems that enable the exchange of information at any time. This information is processed by Machine Learning algorithms to make decisions about current developments in production or to influence logistics processes for optimization purposes. In this article, we present and categorize the further development of the prototype of a novel Indoor Positioning System, which constantly adapts its knowledge to the conditions of its environment with the help of Online Learning. Here, we apply Online Learning algorithms in the field of sound-based indoor localization with low-cost hardware and demonstrate the improvement of the system over its predecessor and its adaptability for different applications in an experimental case study.
Containerization is one of the most important topics for modern data centers and web developers. Since the number of containers on one- and multi-node systems is growing, knowledge about the energy consumption behavior of single web-service containers is essential in order to save energy and, of course, money. In this article, we are going to show how the energy consumption behavior of single containerized web services/web apps changes while creating replicas of the service in order to scale and balance the web service.
Companies have made considerable progress in assessing the sustainability of their processes and products, including the information and communication technology (ICT) sector. However, it is surprising that little attention has been given to the sustainability performance of software products. For this article, we chose a case study approach to explore the extent, to which software manufacturers have considered sustainability criteria for their products. We selected a manufacturer of sustainability management software on the assumption that they would be more likely to integrate elements of sustainability performance in their products. In the case study, we applied a previously developed set of criteria for sustainable software (SCSS) using a questionnaire and experiments, to assess a web-based sustainability management software product regarding its sustainability performance. The assessment finds that despite a sustainability conscious manufacturer, a systematic assessment of sustainability regarding software products is missing in the case study. This implies that sustainability assessment for software products is still novel, corresponding knowledge is missing and suitable tools are not yet being widely applied in the industry. The SCSS presents a suitable approach to close this gap, but it does require further refinement, for example regarding its applicability to web-based software on external servers.