IfaS - Institut für angewandtes Stoffstrommanagement
Filtern
Dokumenttyp
Sprache
- Englisch (10)
Volltext vorhanden
- ja (10)
Gehört zur Bibliographie
- nein (10)
Schlagworte
- China (3)
- Nachhaltigkeit (3)
- Bewässerungswirtschaft (2)
- Japan (2)
- Klimaänderung (2)
- Kohlendioxidemission (2)
- Kreislaufwirtschaft (2)
- Mexiko (2)
- Abfallwirtschaft (1)
- Abwasser (1)
Institut
Following a quantitative analysis of adequate feedstock, comprising 11 woody biomass species, four biochars were generated using a Kon-Tiki flame curtain kiln in the state of Aguascalientes, Mexico. Despite the high quality (certified by European Biochar Certificate), the biochars contain substantial quantities of hazardous substances, such as polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, and heavy metals, which can induce adverse effects if wrongly applied to the environment. To assess the toxicity of biochars to non-target organisms, toxicity tests with four benthic and zooplanktonic invertebrate species, the ciliate Paramecium caudatum, the rotifer Lecane quadridentata, and the cladocerans Daphnia magna and Moina macrocopa were performed using biochar elutriates. In acute and chronic toxicity tests, no acute toxic effect to ciliates, but significant lethality to rotifers and cladocerans was detected. This lethal toxicity might be due to ingestion/digestion by enzymatic/mechanic processes of biochar by cladocerans and rotifers of toxic substances present in the biochar. No chronic toxicity was found where biochar elutriates were mixed with soil. These data indicate that it is instrumental to use toxicity tests to assess biochars’ toxicity to the environment, especially when applied close to sensitive habitats, and to stick closely to the quantitative set-point values.
The concept of Circular Economy (CE) is becoming increasingly important in the pursuit of more sustainable societies. CE strategies are being applied in the sustainable management of a plethora of areas, such as energy, water, food and eco-industrial parks. The present paper focuses on the question of how CE principles can support the sustainable management of water in the agricultural sector around the world, considering different legislative environments, water resources management guidelines, environmental stressors, and CE practices. Considering these practices and circumstances, seven countries were compared: Brazil, Germany, Japan, Mexico, Morocco, Portugal, and Taiwan. Together, CE experts in the seven countries developed a set of 44 criteria to assess each of these areas. Broader establishment and respect of water resources legislation was found to be strongly correlated with lower agricultural water use. While the application of CE practices was found to not be correlated with lower consumption, this is still novel in most countries. Based on the studied countries, it can be concluded that a global CE agenda has not been reached for water resources. Further application and variety of practices is required to better represent the impact of CE on a national scale, but local success stories could support the wider application of CE in agriculture. The findings and the framework of the study can be applied to other countries in directing CE strategies for more sustainable water use in agriculture. Increasing CE implementation, motivated by legislation and better management can help ensure water security throughout nations.
Background: On the way to a more sustainable society, transport needs to be urgently optimized regarding energy consumption and pollution control. While in earlier decades, Europe followed automobile technology leaps initiated in the USA, it has decoupled itself for 20 years by focusing research capacity towards the diesel powertrain. The resulting technology shift has led to some 45 million extra diesel cars in Europe. Its outcome in terms of health and environmental effects will be investigated below.
Results: Expected greenhouse gas savings initiated by the shift to diesel cars have been overestimated. Only about one tenth of overall energy efficiency improvements of passenger cars can be attributed to it. These minor savings are on the other hand overcompensated by a significant increase of supply chain CO2 emissions and extensive black carbon emissions of diesel cars without particulate filter. We conclude that the European diesel car boom did not cool down the atmosphere. Moreover, toxic NO x emissions of diesel cars have been underestimated up to 20-fold in officially announced data. The voluntary agreement signed in 1998 between the European Automobile industry and the European Commission envisaging to reduce CO2 emissions has been identified as elementary for the ensuing European diesel car boom. Four factors have been quantified in order to explain very different dieselization rates across Europe: impact of national car/supplier industry, ecological modernization, fuel tourism and corporatist political governance. By comparing the European diesel strategy to the Japanese petrol-hybrid avenue, it becomes clear that a different road would have both more effectively reduced CO2 emissions and pollutants.
Conclusion: Europe's car fleets have been persistently transformed from being petrol-driven to diesel-driven over the last 20 years. This paper investigates on how this came to be and why Europe took a distinct route as compared to other parts of the world. It also attempts to evaluate the outcome of stated goals of this transformation which was primarily a robust reduction in GHG emissions. We conclude that global warming has been negatively affected, and air pollution has become alarming in many European locations. More progressive development scenarios could have prevented these outcomes.
Water is crucial for socio-economic development and healthy ecosystems. With the actual population growth and in view of future water scarcity, development calls for improved sectorial allocation of groundwater and surface water for domestic, agricultural and industrial use. Instead of intensifying the pressure on water resources, leading to conflicts among users and excessive pressure on the environment, sewage effluents, after pre-treatment, provide an alternative nutrient-rich water source for agriculture in the vicinity of cities. Water scarcity often occurs in arid and semiarid regions affected by droughts and large climate variability and where the choice of crop to be grown is limited by the environmental factors. Jatropha has been introduced as a potential renewable energy resource since it is claimed to be drought resistant and can be grown on marginal sites. Sewage effluents provide a source for water and nutrients for cultivating jatropha, a combined plant production/effluent treatment system. Nevertheless, use of sewage effluents for irrigation in arid climates carries the risk of salinization. Thus, potential irrigation with sewage effluents needs to consider both the water requirement of the crop and those needed for controlling salinity build-up in the top soil. Using data from a case study in Southern Morocco, irrigation requirements were calculated using CROPWAT 8.0. We present here crop evapotranspiration during the growing period, required irrigation, the resulting nutrient input and the related risk of salinization from the irrigation of jatropha with sewage effluent.
Irrigated paddy rice agriculture accounts for a major share of Asia Pacific’s total water withdrawal. Furthermore, climate change induced water scarcity in the Asia-Pacific region is projected to intensify in the near future. Therefore, methods to reduce water consumption through efficiency measures are needed to ensure the long-term (water) sustainability. The irrigation systems, subak of Karangasem, Indonesia, and the tameike of Kunisaki, Japan, are two examples of sustainable paddy rice irrigation. This research, through interviews and an extensive survey, comparatively assessed the socio-environmental sustainability of the two irrigation management systems with special reference to the intensity and nature of social capital, equity of water distribution, water demand, water footprint, and water quality, etc. The prevailing social capital paradigm of each system was also compared to its overall managerial outcomes to analyze how cooperative action contributes to sustainable irrigation management. Both systems show a comparable degree of sustainable irrigation management, ensuring an equitable use of water, and maintain relatively fair water quality due to the land-use practices adapted. However, the systems differ in water demand and water efficiency principally because of the differences in the irrigation management strategies: human and structural. These findings could help devise mechanisms for transitioning to sustainable irrigation management in the commercially-oriented paddy rice agricultural systems across the Asia-Pacific region.
Issues on climate change have been recognized as serious challenges for regional sustainable development both at a global and local level. Given the background that most of the artificial carbon emissions are resulted from the energy consumption sector and the energy is also the key element resource for economic development, this paper investigated the relationship between CO2 emission, fossil energy consumption, and economic growth in the period 1970–2008 of nine European countries, based on the approach of Granger Causality Test, followed by the risk analysis on impacts of CO2 reduction to local economic growth classified by the indicator of causality degree. The results show that there are various feedback causal relationships between carbon emission, energy consumption and economic growth, with both unidirectional and dual-directional Granger causality. The impact of reducing CO2 emission to economic growth varies between countries as well.
Integrated analysis on socio-economic metabolism could provide a basis for understanding and optimizing regional sustainability. The paper conducted socio-economic metabolism analysis by means of the emergy accounting method coupled with data envelopment analysis and decomposition analysis techniques to assess the sustainability of Qingyang city and its eight sub-region system, as well as to identify the major driving factors of performance change during 2000–2007, to serve as the basis for future policy scenarios. The results indicate that Qingyang greatly depended on non-renewable emergy flows and feedback (purchased) emergy flows, except the two sub-regions, named Huanxian and Huachi, which highly depended on renewable emergy flow. Zhenyuan, Huanxian and Qingcheng were identified as being relatively emergy efficient, and the other five sub-regions have potential to reduce natural resource inputs and waste output to achieve the goal of efficiency. The results of decomposition analysis show that the economic growth, as well as the increased emergy yield ratio and population not accompanied by a sufficient increase of resource utilization efficiency are the main drivers of the unsustainable economic model in Qingyang and call for polices to promote the efficiency of resource utilization and to optimize natural resource use.
This paper analyzed the characteristic of the tourism destination ecosystem from perspective of entropy in Dunhuang City. Given these circumstances, an evaluation index system that considers the potential of sustainable development was formed based on dissipative structure and entropy change for the tourism destination ecosystem. The sustainable development potential evaluation model for tourism destination ecosystem was built up based on information entropy. Then, we analyzed each indicator impact for the sustainable development potential and proposed some measures for the tourism destination ecosystem. The conclusions include: (a) the requirements of Dunhuang tourism destination ecosystem on the natural ecosystem continuously grew between 2000 and 2012; (b) The sustainable development potential of the Dunhuang tourism destination ecosystem was on an oscillation upward trend during the study period, which is dependent on government attention, and pollution problems were improved.
With less than 6% of total global water resources but one fifth of the global population, China is facing serious challenges for its water resources management, particularly in rural areas due to the long-standing urban-rural dualistic structure and the economic-centralized developmental policies. This paper addresses the key water crises in rural China including potable water supply, wastewater treatment and disposal, water for agricultural purposes, and environmental concerns, and then analyzes the administrative system on water resources from the perspective of characteristics of the current administrative system and regulations; finally, synthetic approaches to solve water problems in rural China are proposed with regard to institutional reform, regulation revision, economic instruments, technology innovation and capacity-building. These recommendations provide valuable insights to water managers in rural China so that they can identify the most appropriate pathways for optimizing their water resources, reducing the total wastewater discharge and improving their water-related ecosystem.
Resource prospects of municipal solid wastes generated in the Ga East Municipal Assembly of Ghana
(2017)
Background: Municipal solid wastes management has recently become an important public health concern. Municipal solid wastes are a major source of raw materials that could be used for resource recovery for diverse applications.
Objectives: The present study aimed to determine the composition of municipal solid waste and recoverable resources from the waste of the Ga East Municipal Assembly (GEMA) in the Greater Accra region of Ghana.
Methods: An exploratory approach was used to collect pertinent data from the Abloradgei dumpsite in GEMA using semi-structured interviews and focus group discussion. A field characterization study was undertaken to segregate and estimate the value of various components of collected waste. Dumpsite workers were asked about current general composition of MSW, mode of collection and disposal, record of sanitation-related diseases, use of modern treatment plant, waste management legislation and enforcement challenges, number of trucks received by the dumpsite per day, record on pretreatment of MSW before disposal, and use of personnel protective equipment.
Results: The results showed that significant proportions (48.8%) of the municipal solid wastes were organic materials, while the remaining (51.2%) were inorganic materials. The results also showed that 63% of the municipal solid waste is collected with no sorting from the source and no modern treatment applied before dumping. It was estimated that the value of the recyclable materials in GEMA municipal solid waste amounts to Ghana Cedis (GH¢) 9,381,960 (plastic); 985,111 (mixed glass); 5,160,078 (paper) and 11,586,770 (metal) with a total of GH¢ 27,113,919 ($10,845,568) equivalent to 2,106,339.2 m3 (74,384,667.5 ft3) per annum of biogas from these components with a market value of GH¢ 1,997,972.17 ($768, 393.62); 11,579 Mwh (1.32 Mw) of electricity and 9,535 Mwh (1.09 Mw) of heat. This is estimated to be lost with the current waste management practices.
Conclusions: We recommend that GEMA institute sustainable recycling practices and utilization of biogas production technologies and prioritize sanitation and waste management education for the public, obligate home segregation of waste materials, involve workers by providing them with protective clothing, incorporate informal waste collectors and scavengers into the new system and collaborate with research institutions in waste-to-resource projects to ensure a more sustainable waste management system in the municipality.