FB Umweltplanung/-technik (UCB)
Filtern
Erscheinungsjahr
Dokumenttyp
Volltext vorhanden
- ja (58)
Gehört zur Bibliographie
- nein (58)
Schlagworte
- Biodiversität (6)
- CO2-Bilanz (6)
- Elektrofahrzeug (6)
- Elektromobilität (4)
- Fermentation (4)
- Maschinelles Lernen (4)
- Rapid Prototyping <Fertigung> (4)
- Umweltbilanz (4)
- Biomonitoring (3)
- Insekten (3)
Institut
The Saarschleife geotope (SE-Germany) represents one of the most prominent geotopes of the SaarLorLux region and is known far beyond the borders of the Greater Region. Surprisingly, there is no visual representation of the relief history and genesis of this river meander, which is unique for Central Europe - as is common at places with comparable outstanding phenomena, such as e.g. the Rocher Saint-Michel d'Aiguilhe (France) or some national parks in the U.S. (e.g. Grand Canyon). The Saarschleife geotope therefore was choosen as a pilot object for the envisaged analysis of the landscape genesis but also regarding the 3D mapping and visualization. The visualisation presents the relief history and geological evolution of the last 300 million years in selected geological epochs, which are of fundamental importance for the understanding of today's geomorphological relief conditions, and is compiled into a summarized chronology.
Terrestrial cyanobacteria grow as phototrophic biofilms and offer a wide spectrum of interesting products. For cultivation of phototrophic biofilms different reactor concepts have been developed in the last years. One of the main influencing factors is the surface material and the adhesion strength of the chosen production strain. In this work a flow chamber was developed, in which, in combination with optical coherence tomography and computational fluid dynamics simulation, an easy analysis of adhesion forces between different biofilms and varied surface materials is possible. Hereby, differences between two cyanobacteria strains and two surface materials were shown. With longer cultivation time of biofilms adhesion increased in all experiments. Additionally, the content of extracellular polymeric substances was analyzed and its role in surface adhesion was evaluated. To test the comparability of obtained results from the flow chamber with other methods, analogous experiments were conducted with a rotational rheometer, which proved to be successful. Thus, with the presented flow chamber an easy to implement method for analysis of biofilm adhesion was developed, which can be used in future research for determination of suitable combinations of microorganisms with cultivation surfaces on lab scale in advance of larger processes.
Science on ecosystems and people to support the Kunming-Montreal Global Biodiversity Framework
(2023)
In December 2022, members of the Convention on Biological Diversity adopted the new Kunming-Montreal Global Biodiversity Framework (GBF) to guide international biodiversity conservation efforts until 2030 in order to be able to live ‘in harmony with nature’ by 2050. This framework addresses the implementation gap left after the Aichi Biodiversity Targets, which were the previous global instrument for mainstreaming biodiversity conservation between 2010 and 2020.
The aim of this editorial is to draw attention to the GBF targets that are most relevant to our readership, with two objectives: First, to suggest how Ecosystems and People may be a venue for emerging research insights in support of the GBF. Second, to highlight examples of recent research in Ecosystems and People that can contribute to enrich, or even challenge, the evidence and development of the GBF Targets.
1. Woody riparian vegetation (WRV) benefits benthic macroinvertebrates in running waters. However, while some functions are provided by WRV irrespective of surrounding and catchment land use, others are context-specific. In recent large-scale studies, effects of WRV on macroinvertebrates were therefore small compared to catchment land use, raising the question about the relevance of WRV for restoration.
2. Model-based recursive partitioning was used to identify context-dependent effects of WRV on the macroinvertebrates' ecological status in small (catchment area 10–100 km2) lowland (n = 361) and mountain (n = 748) streams. WRV cover was quantified from orthophotos along the near (500 m) and far (5000 m) upstream river network and used to predict the site's ecological status. Agricultural, urban and woodland cover at the local and catchment scales along with hydromorphology were considered as partitioning variables.
3. In rural agricultural landscapes, the effect of WRV on the ecological status was large, indicating that establishing near-upstream WRV can improve the ecological status by as much as two of the five classes according to the EU Water Framework Directive.
4. Even in urban landscapes, effects of far-upstream WRV were large if catchments had a moderate share of agricultural land use in addition. The beneficial effects of WRV were only limited in purely urban catchments or in a multiple stressor context.
5. Synthesis and applications. While woody riparian vegetation (WRV) can even improve the ecological status in urban settings, it is especially relevant for river management in rural agricultural catchments, where developing WRV potentially are effective measures to achieve good ecological status.
Die Umbenetzungsagglomeration bietet die Möglichkeit einer Trennung nach zwei Partikeleigenschaften. Hierbei wird nach den Benetzungseigenschaften des Feststoffs in Bezug zur Suspensions- und Bindeflüssigkeit getrennt und nach der Größe. Ziel dieser Arbeit ist, die Reinheit der entstehenden Graphitagglomerate in einer Mischung mit Quarzsand gravimetrisch zu bestimmen und diese mit den Benetzungseigenschaften zu korrelieren. Die Güte dieser Ergebnisse wird mit einer Mikroröntgentomographie (µ-CT) untersucht. Es konnte gezeigt werden, dass sich Quarzsand mit Paraffinöl nicht benetzen lässt und somit Reinheiten von 99,5 % bis 99,9 % erreicht werden, was das Ergebnis der µ-CT bestätigt. Einen Einfluss der Partikelgröße des Quarzsandes konnte im untersuchten Bereich nicht bestätigt werden.
Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.
This research conducted a probabilistic life-cycle assessment (pLCA) into the greenhouse gas (GHG) emissions performance of nine combinations of truck size and powertrain technology for a recent past and a future (largely decarbonised) situation in Australia. This study finds that the relative and absolute life-cycle GHG emissions performance strongly depends on the vehicle class, powertrain and year of assessment. Life-cycle emission factor distributions vary substantially in their magnitude, range and shape. Diesel trucks had lower life-cycle GHG emissions in 2019 than electric trucks (battery, hydrogen fuel cell), mainly due to the high carbon-emission intensity of the Australian electricity grid (mainly coal) and hydrogen production (mainly through steam–methane reforming). The picture is, however, very different for a more decarbonised situation, where battery electric trucks, in particular, provide deep reductions (about 75–85%) in life-cycle GHG emissions. Fuel-cell electric (hydrogen) trucks also provide substantial reductions (about 50–70%), but not as deep as those for battery electric trucks. Moreover, hydrogen trucks exhibit the largest uncertainty in emissions performance, which reflects the uncertainty and general lack of information for this technology. They therefore carry an elevated risk of not achieving the expected emission reductions. Battery electric trucks show the smallest (absolute) uncertainty, which suggests that these trucks are expected to deliver the deepest and most robust emission reductions. Operational emissions (on-road driving and vehicle maintenance combined) dominate life-cycle emissions for all vehicle classes. Vehicle manufacturing and upstream emissions make a relatively small contribution to life-cycle emissions from diesel trucks (<5% each), but these are important aspects for electric trucks (5% to 30%).
Hydrological variability is a key factor in structuring biotic and abiotic processes in river ecosystems and is of particular importance to fish populations. We used 171 hydrological indices (HI) and young-of-the-year (YOY) fish abundances as indicators of reproductive success to compare species' response patterns to high and low flows on short-, intermediate-, and long-term scales. Our study included 13 common fish species in headwater streams of North Rhine-Westphalia, Germany. Generalized linear models using YOY abundances and HI on high- and low-flow patterns explained on average 64 % of the variability. HI calculated from long time series worked better than HI describing short- and intermediate-term high- and low flows. Species' reproductive success response to low flow HI depended on specific ecological traits whereas high flow HI differentially affected species according to their life history strategies. Equilibrium strategists responded negatively to high frequency and magnitude along with late timing of high flow, while periodic and opportunistic species mostly thrived under these conditions. We identified four species traits that mediated these differences between life history strategies. The reproductive success of species with low relative fecundity, large eggs and larvae, and long incubation periods was negatively impacted by the high frequency, high magnitude, and late timing of high flows. Conversely, the reproductive success of species with high relative fecundity, short incubation periods and small eggs and larvae was fostered by strong, frequent, and late high flows. The consideration of the relationship between reproductive success, life history, and fish species traits over several years under a range of flows is a novel step towards the implementation of measures to mitigate negative impacts and enhance conditions for successful fish reproduction.
In the past decade, research on measuring and assessing the environmental impact of software has gained significant momentum in science and industry. However, due to the large number of research groups, measurement setups, procedure models, tools, and general novelty of the research area, a comprehensive research framework has yet to be created. The literature documents several approaches from researchers and practitioners who have developed individual methods and models, along with more general ideas like the integration of software sustainability in the context of the UN Sustainable Development Goals, or science communication approaches to make the resource cost of software transparent to society. However, a reference measurement model for the energy and resource consumption of software is still missing. In this article, we jointly develop the Green Software Measurement Model (GSMM), in which we bring together the core ideas of the measurement models, setups, and methods of over 10 research groups in four countries who have done pioneering work in assessing the environmental impact of software. We briefly describe the different methods and models used by these research groups, derive the components of the GSMM from them, and then we discuss and evaluate the resulting reference model. By categorizing the existing measurement models and procedures and by providing guidelines for assimilating and tailoring existing methods, we expect this work to aid new researchers and practitioners who want to conduct measurements for their individual use cases.
Social media data are transforming sustainability science. However, challenges from restrictions in data accessibility and ethical concerns regarding potential data misuse have threatened this nascent field. Here, we review the literature on the use of social media data in environmental and sustainability research. We find that they can play a novel and irreplaceable role in achieving the UN Sustainable Development Goals by allowing a nuanced understanding of human-nature interactions at scale, observing the dynamics of social-ecological change, and investigating the co-construction of nature values. We reveal threats to data access and highlight scientific responsibility to address trade-offs between research transparency and privacy protection, while promoting inclusivity. This contributes to a wider societal debate of social media data for sustainability science and for the common good.