• Deutsch
Admin

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Helmers, Eckard (5)
  • Weiss, Martin (5)
  • Cloos, Kira Christina (1)
  • Dietz, Johannes (1)
  • Irrgang, Lukas (1)
  • Kiefer, Andreas T. (1)
  • Roth, Josefine R. (1)
  • Zerfass, Andreas (1)

Year of publication

  • 2019 (2)
  • 2020 (2)
  • 2017 (1)

Document Type

  • Article (specialist journals) (5)

Language

  • English (5)

Has Fulltext

  • yes (5)

Is part of the Bibliography

  • no (5)

Keywords

  • Elektrofahrzeug (3)
  • Elektromobilität (3)
  • Umweltbilanz (2)
  • climate policy (2)
  • efficiency trade-offs (2)
  • electric cars (2)
  • BEV (battery electric vehicle) (1)
  • Batteriefahrzeug (1)
  • CO2 emissions (1)
  • CO2-Bilanz (1)
+ more

Institute

  • FB Umweltplanung/-technik (UCB) (5)

5 search hits

  • 1 to 5
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Sensitivity analysis in the life-cycle assessment of electric vs. combustion engine cars under approximate real-world conditions (2020)
Helmers, Eckard ; Dietz, Johannes ; Weiss, Martin
This study compares the environmental impacts of petrol, diesel, natural gas, and electric vehicles using a process-based attributional life cycle assessment (LCA) and the ReCiPe characterization method that captures 18 impact categories and the single score endpoints. Unlike common practice, we derive the cradle-to-grave inventories from an originally combustion engine VW Caddy that was disassembled and electrified in our laboratory, and its energy consumption was measured on the road. Ecoivent 2.2 and 3.0 emission inventories were contrasted exhibiting basically insignificant impact deviations. Ecoinvent 3.0 emission inventory for the diesel car was additionally updated with recent real-world close emission values and revealed strong increases over four midpoint impact categories, when matched with the standard Ecoinvent 3.0 emission inventory. Producing batteries with photovoltaic electricity instead of Chinese coal-based electricity decreases climate impacts of battery production by 69%. Break-even mileages for the electric VW Caddy to pass the combustion engine models under various conditions in terms of climate change impact ranged from 17,000 to 310,000 km. Break-even mileages, when contrasting the VW Caddy and a mini car (SMART), which was as well electrified, did not show systematic differences. Also, CO2-eq emissions in terms of passenger kilometers travelled (54–158 g CO2-eq/PKT) are fairly similar based on 1 person travelling in the mini car and 1.57 persons in the mid-sized car (VW Caddy). Additionally, under optimized conditions (battery production and use phase utilizing renewable electricity), the two electric cars can compete well in terms of CO2-eq emissions per passenger kilometer with other traffic modes (diesel bus, coach, trains) over lifetime. Only electric buses were found to have lower life cycle carbon emissions (27–52 g CO2-eq/PKT) than the two electric passenger cars.
Energy efficiency trade-offs in small to large electric vehicles (2020)
Weiss, Martin ; Cloos, Kira Christina ; Helmers, Eckard
Background: As electric kick scooters, three-wheelers, and passenger cars enter the streets, efficiency trade-offs across vehicle types gain practical relevance for consumers and policy makers. Here, we compile a comprehensive dataset of 428 electric vehicles, including seven vehicle types and information on certified and real-world energy consumption. Regression analysis is applied to quantify trade-offs between energy consumption and other vehicle attributes. Results: Certified and real-world energy consumption of electric vehicles increase by 60% and 40%, respectively, with each doubling of vehicle mass, but only by 5% with each doubling of rated motor power. These findings hold roughly also for passenger cars whose energy consumption tends to increase 0.6 ± 0.1 kWh/100 km with each 100 kg of vehicle mass. Battery capacity and vehicle mass are closely related. A 10 kWh increase in battery capacity increases the mass of electric cars by 15 kg, their drive range by 40–50 km, and their energy consumption by 0.7–1.0 kWh/100 km. Mass-produced state-of-the-art electric passenger cars are 2.1 ± 0.8 kWh/100 km more efficient than first-generation vehicles, produced at small scale. Conclusion: Efficiency trade-offs in electric vehicles differ from those in conventional cars—the latter showing a strong dependency of fuel consumption on rated engine power. Mass-related efficiency trade-offs in electric vehicles are large and could be tapped by stimulating mode shift from passenger cars to light electric road vehicles. Electric passenger cars still offer potentials for further efficiency improvements. These could be exploited through a dedicated energy label with battery capacity as utility parameter.
Mass- and power-related efficiency trade-offs and CO2 emissions of compact passenger cars (2019)
Weiss, Martin ; Irrgang, Lukas ; Kiefer, Andreas T. ; Roth, Josefine R. ; Helmers, Eckard
Passenger cars in Europe have become both heavier and more powerful over the past decades. This trend has increased vehicle utility but it might have also offset technical improvements in powertrain efficiency. Here, we analyze efficiency trade-offs and CO2 emissions for three popular compact cars in Germany. We find that mass, power, and front area of model variants has increased by 66%, 147%, and 22%, respectively between 1980 and 2018. In the same period, fuel consumption decreased 14% for gasoline models but it increased 9% for diesel models. However, if vehicle mass, power, and front area had remained at 1980 levels, technical efficiency improvements would have decreased the fuel consumption of gasoline and diesel models by 23% and 24%, respectively. The related efficiency trade-offs amount to 24 g CO2/km or 13% of the current fuel consumption for gasoline models and 40 g CO2/km or 25% of the current fuel consumption for diesel models. These findings suggest that about half of the technical efficiency improvements in gasoline models and all of the technical efficiency improvements in diesel models are offset through other vehicle attributes. By accounting for the observed efficiency trade-offs, climate policy could become more effective.
Fully electric and plug-in hybrid cars - An analysis of learning rates, user costs, and costs for mitigating CO2 and air pollutant emissions (2019)
Weiss, Martin ; Zerfass, Andreas ; Helmers, Eckard
This article presents experience curves and cost-benefit analyses for electric and plug-in hybrid cars sold in Germany. We find that between 2010 and 2016, the prices and price differentials relative to conventional cars declined at learning rates of 23 ± 2% and 32 ± 2% for electric cars and 6 ± 1% and 37 ± 2% for plug-in hybrids. If trends persist, price beak-even with conventional cars may be reached after another 7 ± 1 million electric cars and 5 ± 1 million plug-in hybrids are produced. The user costs of electric and plug-in hybrid cars relative to their conventional counterparts are declining annually by 14% and 26%. Also the costs for mitigating CO2 and air pollutant emissions through the deployment of electrified cars tend to decline. However, at current levels, NOX and particle emissions are still mitigated at lower costs by state-of-the-art after-treatment systems than through the electrification of powertrains. Overall, the observation of robust technological learning suggests policy makers should focus their support on non-cost market barriers for the electrification of road transport, addressing specifically the availability of recharging infrastructure.
Advances and critical aspects in the life-cycle assessment of battery electric cars (2017)
Helmers, Eckard ; Weiss, Martin
Concerns over climate change, air pollution, and oil supply have stimulated the market for battery electric vehicles (BEVs). The environmental impacts of BEVs are typically evaluated through a standardized life-cycle assessment (LCA) methodology. Here, the LCA literature was surveyed with the objective to sketch the major trends and challenges in the impact assessment of BEVs. It was found that BEVs tend to be more energy efficient and less polluting than conventional cars. BEVs decrease exposure to air pollution as their impacts largely result from vehicle production and electricity generation outside of urban areas. The carbon footprint of BEVs, being highly sensitive to the carbon intensity of the electricity mix, may decrease in the nearby future through a shift to renewable energies and technology improvements in general. A minority of LCAs covers impact categories other than carbon footprint, revealing a mixed picture. Up to date little attention is paid so far in LCA to the efficiency advantage of BEVs in urban traffic, the gap between on-road and certified energy consumption, the local exposure to air pollutants and noise and the aging of emissions control technologies in conventional cars. Improvements of BEV components, directed charging, second-life reuse of vehicle batteries, as well as vehicle-to-home and vehicle-to-grid applications will significantly reduce the environmental impacts of BEVs in the future.
  • 1 to 5

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks