Refine
Document Type
Language
- English (12)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
- Elektrofahrzeug (5)
- CO2-Bilanz (4)
- Elektromobilität (4)
- CO2 (2)
- Deutschland (2)
- Dieselkraftstoff (2)
- Emissionsverringerung (2)
- Klimaänderung (2)
- Kohlendioxidemission (2)
- Kraftfahrzeugindustrie (2)
Universities, as innovation drivers in science and technology worldwide, should attempt to become carbon-neutral institutions and should lead this transformation. Many universities have picked up the challenge and quantified their carbon footprints; however, up-to-date quantification is limited to use-phase emissions. So far, data on embodied impacts of university campus infrastructure are missing, which prevents us from evaluating their life cycle costs. In this paper, we quantify the embodied impacts of two university campuses of very different sizes and climate zones: the Umwelt-Campus Birkenfeld (UCB), Germany, and the Nanyang Technological University (NTU), Singapore. We also quantify the effects of switching to full renewable energy supply on the carbon footprint of a university campus based on the example of UCB. The embodied impacts amount to 13.7 (UCB) and 26.2 (NTU) kg CO2e/m2•y, respectively, equivalent to 59.2% (UCB), and 29.8% (NTU), respectively, of the building lifecycle impacts. As a consequence, embodied impacts can be dominating; thus, they should be quantified and reported. When adding additional use-phase impacts caused by the universities on top of the building lifecycle impacts (e.g., mobility impacts), both institutions happen to exhibit very similar emissions with 124.5–126.3 kg CO2e/m2•y despite their different sizes, structures, and locations. Embodied impacts comprise 11.0–20.8% of the total impacts at the two universities. In conclusion, efficient reduction in university carbon footprints requires a holistic approach, considering all impacts caused on and by a campus including upstream effects.
This study compares the environmental impacts of petrol, diesel, natural gas, and electric vehicles using a process-based attributional life cycle assessment (LCA) and the ReCiPe characterization method that captures 18 impact categories and the single score endpoints. Unlike common practice, we derive the cradle-to-grave inventories from an originally combustion engine VW Caddy that was disassembled and electrified in our laboratory, and its energy consumption was measured on the road. Ecoivent 2.2 and 3.0 emission inventories were contrasted exhibiting basically insignificant impact deviations. Ecoinvent 3.0 emission inventory for the diesel car was additionally updated with recent real-world close emission values and revealed strong increases over four midpoint impact categories, when matched with the standard Ecoinvent 3.0 emission inventory. Producing batteries with photovoltaic electricity instead of Chinese coal-based electricity decreases climate impacts of battery production by 69%. Break-even mileages for the electric VW Caddy to pass the combustion engine models under various conditions in terms of climate change impact ranged from 17,000 to 310,000 km. Break-even mileages, when contrasting the VW Caddy and a mini car (SMART), which was as well electrified, did not show systematic differences. Also, CO2-eq emissions in terms of passenger kilometers travelled (54–158 g CO2-eq/PKT) are fairly similar based on 1 person travelling in the mini car and 1.57 persons in the mid-sized car (VW Caddy). Additionally, under optimized conditions (battery production and use phase utilizing renewable electricity), the two electric cars can compete well in terms of CO2-eq emissions per passenger kilometer with other traffic modes (diesel bus, coach, trains) over lifetime. Only electric buses were found to have lower life cycle carbon emissions (27–52 g CO2-eq/PKT) than the two electric passenger cars.
Carbon footprinting of universities worldwide: Part I — objective comparison by standardized metrics
(2021)
Background: Universities, as innovation drivers in science and technology worldwide, should be leading the Great Transformation towards a carbon–neutral society and many have indeed picked up the challenge. However, only a small number of universities worldwide are collecting and publishing their carbon footprints, and some of them have defined zero emission targets. Unfortunately, there is limited consistency between the reported carbon footprints (CFs) because of different analysis methods, different impact measures, and different target definitions by the respective universities.
Results: Comprehensive CF data of 20 universities from around the globe were collected and analysed. Essential factors contributing to the university CF were identified. For the first time, CF data from universities were not only compared. The CF data were also evaluated, partly corrected, and augmented by missing contributions, to improve the consistency and comparability. The CF performance of each university in the respective year is thus homogenized, and measured by means of two metrics: CO2e emissions per capita and per m2 of constructed area. Both metrics vary by one order of magnitude across the different universities in this study. However, we identified ten universities reaching a per capita carbon footprint of lower than or close to 1.0 Mt (metric tons) CO2e/person and year (normalized by the number of people associated with the university), independent from the university’s size. In addition to the aforementioned two metrics, we suggested a new metric expressing the economic efficiency in terms of the CF per $ expenditures and year. We next aggregated the results for all three impact measures, arriving at an overall carbon performance for the respective universities, which we found to be independent of geographical latitude. Instead the per capita measure correlates with the national per capita CFs, and it reaches on average 23% of the national impacts per capita. The three top performing universities are located in Switzerland, Chile, and Germany.
Conclusion: The usual reporting of CO2 emissions is categorized into Scopes 1–3 following the GHG Protocol Corporate Accounting Standard which makes comparison across universities challenging. In this study, we attempted to standardize the CF metrics, allowing us to objectively compare the CF at several universities. From this study, we observed that, almost 30 years after the Earth Summit in Rio de Janeiro (1992), the results are still limited. Only one zero emission university was identified, and hence, the transformation should speed up globally.
Background: Electric vehicles have been identified as being a key technology in reducing future emissions and energy consumption in the mobility sector. The focus of this article is to review and assess the energy efficiency and the environmental impact of battery electric cars (BEV), which is the only technical alternative on the market available today to vehicles with internal combustion engine (ICEV). Electricity onboard a car can be provided either by a battery or a fuel cell (FCV). The technical structure of BEV is described, clarifying that it is relatively simple compared to ICEV. Following that, ICEV can be ‘e-converted’ by experienced personnel. Such an e-conversion project generated reality-close data reported here.
Results: Practicability of today's BEV is discussed, revealing that particularly small-size BEVs are useful. This article reports on an e-conversion of a used Smart. Measurements on this car, prior and after conversion, confirmed a fourfold energy efficiency advantage of BEV over ICEV, as supposed in literature. Preliminary energy efficiency data of FCV are reviewed being only slightly lower compared to BEV. However, well-to-wheel efficiency suffers from 47% to 63% energy loss during hydrogen production. With respect to energy efficiency, BEVs are found to represent the only alternative to ICEV. This, however, is only true if the electricity is provided by very efficient power plants or better by renewable energy production. Literature data on energy consumption and greenhouse gas (GHG) emission by ICEV compared to BEV suffer from a 25% underestimation of ICEV-standardized driving cycle numbers in relation to street conditions so far. Literature data available for BEV, on the other hand, were mostly modeled and based on relatively heavy BEV as well as driving conditions, which do not represent the most useful field of BEV operation. Literature data have been compared with measurements based on the converted Smart, revealing a distinct GHG emissions advantage due to the German electricity net conditions, which can be considerably extended by charging electricity from renewable sources. Life cycle carbon footprint of BEV is reviewed based on literature data with emphasis on lithium-ion batteries. Battery life cycle assessment (LCA) data available in literature, so far, vary significantly by a factor of up to 5.6 depending on LCA methodology approach, but also with respect to the battery chemistry. Carbon footprint over 100,000 km calculated for the converted 10-year-old Smart exhibits a possible reduction of over 80% in comparison to the Smart with internal combustion engine.
Conclusion: Findings of the article confirm that the electric car can serve as a suitable instrument towards a much more sustainable future in mobility. This is particularly true for small-size BEV, which is underrepresented in LCA literature data so far. While CO2-LCA of BEV seems to be relatively well known apart from the battery, life cycle impact of BEV in categories other than the global warming potential reveals a complex and still incomplete picture. Since technology of the electric car is of limited complexity with the exception of the battery, used cars can also be converted from combustion to electric. This way, it seems possible to reduce CO2-equivalent emissions by 80% (factor 5 efficiency improvement).
Background: As electric kick scooters, three-wheelers, and passenger cars enter the streets, efficiency trade-offs across vehicle types gain practical relevance for consumers and policy makers. Here, we compile a comprehensive dataset of 428 electric vehicles, including seven vehicle types and information on certified and real-world energy consumption. Regression analysis is applied to quantify trade-offs between energy consumption and other vehicle attributes.
Results: Certified and real-world energy consumption of electric vehicles increase by 60% and 40%, respectively, with each doubling of vehicle mass, but only by 5% with each doubling of rated motor power. These findings hold roughly also for passenger cars whose energy consumption tends to increase 0.6 ± 0.1 kWh/100 km with each 100 kg of vehicle mass. Battery capacity and vehicle mass are closely related. A 10 kWh increase in battery capacity increases the mass of electric cars by 15 kg, their drive range by 40–50 km, and their energy consumption by 0.7–1.0 kWh/100 km. Mass-produced state-of-the-art electric passenger cars are 2.1 ± 0.8 kWh/100 km more efficient than first-generation vehicles, produced at small scale.
Conclusion: Efficiency trade-offs in electric vehicles differ from those in conventional cars—the latter showing a strong dependency of fuel consumption on rated engine power. Mass-related efficiency trade-offs in electric vehicles are large and could be tapped by stimulating mode shift from passenger cars to light electric road vehicles. Electric passenger cars still offer potentials for further efficiency improvements. These could be exploited through a dedicated energy label with battery capacity as utility parameter.
A comprehensive overview is provided evaluating direct real-world CO2 emissions of both diesel and petrol cars newly registered in Europe between 1995 and 2015. Before 2011, European diesel cars emitted less CO2 per kilometre than petrol cars, but since then there is no appreciable difference in per-km CO2 emissions between diesel and petrol cars. Real-world CO2 emissions of diesel cars have not declined appreciably since 2001, while the CO2 emissions of petrol cars have been stagnant since 2012. When adding black carbon related CO2-equivalents, such as from diesel cars without particulate filters, diesel cars were discovered to have had much higher climate relevant emissions until the year 2001 when compared to petrol cars. From 2001 to 2015 CO2-equivalent emissions from new diesel cars and petrol cars were hardly distinguishable. Lifetime use phase CO2-equivalent emissions of all European passenger vehicles were modelled for 1995–2015 based on three scenarios: the historic case, another scenario freezing percentages of diesel cars at the low levels from the early 1990s (thus avoiding the observed “boom” in new diesel registrations), and an advanced mitigation scenario based on high proportions of petrol hybrid cars and cars burning gaseous fuels. The difference in CO2-equivalent emissions between the historical case and the scenario avoiding the diesel car boom is only 0.4%. The advanced mitigation scenario would have been able to achieve a 3.4% reduction in total CO2-equivalent emissions over the same time frame. The European diesel car boom appears to have been ineffective at reducing climate-warming emissions from the European transport sector.
Passenger cars in Europe have become both heavier and more powerful over the past decades. This trend has increased vehicle utility but it might have also offset technical improvements in powertrain efficiency. Here, we analyze efficiency trade-offs and CO2 emissions for three popular compact cars in Germany. We find that mass, power, and front area of model variants has increased by 66%, 147%, and 22%, respectively between 1980 and 2018. In the same period, fuel consumption decreased 14% for gasoline models but it increased 9% for diesel models. However, if vehicle mass, power, and front area had remained at 1980 levels, technical efficiency improvements would have decreased the fuel consumption of gasoline and diesel models by 23% and 24%, respectively. The related efficiency trade-offs amount to 24 g CO2/km or 13% of the current fuel consumption for gasoline models and 40 g CO2/km or 25% of the current fuel consumption for diesel models. These findings suggest that about half of the technical efficiency improvements in gasoline models and all of the technical efficiency improvements in diesel models are offset through other vehicle attributes. By accounting for the observed efficiency trade-offs, climate policy could become more effective.
This article presents experience curves and cost-benefit analyses for electric and plug-in hybrid cars sold in Germany. We find that between 2010 and 2016, the prices and price differentials relative to conventional cars declined at learning rates of 23 ± 2% and 32 ± 2% for electric cars and 6 ± 1% and 37 ± 2% for plug-in hybrids. If trends persist, price beak-even with conventional cars may be reached after another 7 ± 1 million electric cars and 5 ± 1 million plug-in hybrids are produced. The user costs of electric and plug-in hybrid cars relative to their conventional counterparts are declining annually by 14% and 26%. Also the costs for mitigating CO2 and air pollutant emissions through the deployment of electrified cars tend to decline. However, at current levels, NOX and particle emissions are still mitigated at lower costs by state-of-the-art after-treatment systems than through the electrification of powertrains. Overall, the observation of robust technological learning suggests policy makers should focus their support on non-cost market barriers for the electrification of road transport, addressing specifically the availability of recharging infrastructure.
Purpose: The well-to-wheel (WTW) methodology is widely used for policy support in road transport. It can be seen as a simplified life cycle assessment (LCA) that focuses on the energy consumption and CO2 emissions only for the fuel being consumed, ignoring other stages of a vehicle’s life cycle. WTW results are therefore different from LCA results. In order to close this gap, the authors propose a hybrid WTW+LCA methodology useful to assess the greenhouse gas (GHG) profiles of road vehicles.
Methods: The proposed method (hybrid WTW+LCA) keeps the main hypotheses of the WTW methodology, but integrates them with LCA data restricted to the global warming potential (GWP) occurring during the manufacturing of the battery pack. WTW data are used for the GHG intensity of the EU electric mix, after a consistency check with the main life cycle impact (LCI) sources available in literature.
Results and discussion: A numerical example is provided, comparing GHG emissions due to the use of a battery electric vehicle (BEV) with emissions from an internal combustion engine vehicle. This comparison is done both according to the WTW approach (namely the JEC WTW version 4) and the proposed hybrid WTW+LCA method. The GHG savings due to the use of BEVs calculated with the WTW-4 range between 44 and 56 %, while according to the hybrid method the savings are lower (31–46 %). This difference is due to the GWP which arises as a result of the manufacturing of the battery pack for the electric vehicles.
Conclusions: The WTW methodology used in policy support to quantify energy content and GHG emissions of fuels and powertrains can produce results closer to the LCA methodology by adopting a hybrid WTW+LCA approach. While evaluating GHG savings due to the use of BEVs, it is important that this method considers the GWP due to the manufacturing of the battery pack.
Background: On the way to a more sustainable society, transport needs to be urgently optimized regarding energy consumption and pollution control. While in earlier decades, Europe followed automobile technology leaps initiated in the USA, it has decoupled itself for 20 years by focusing research capacity towards the diesel powertrain. The resulting technology shift has led to some 45 million extra diesel cars in Europe. Its outcome in terms of health and environmental effects will be investigated below.
Results: Expected greenhouse gas savings initiated by the shift to diesel cars have been overestimated. Only about one tenth of overall energy efficiency improvements of passenger cars can be attributed to it. These minor savings are on the other hand overcompensated by a significant increase of supply chain CO2 emissions and extensive black carbon emissions of diesel cars without particulate filter. We conclude that the European diesel car boom did not cool down the atmosphere. Moreover, toxic NO x emissions of diesel cars have been underestimated up to 20-fold in officially announced data. The voluntary agreement signed in 1998 between the European Automobile industry and the European Commission envisaging to reduce CO2 emissions has been identified as elementary for the ensuing European diesel car boom. Four factors have been quantified in order to explain very different dieselization rates across Europe: impact of national car/supplier industry, ecological modernization, fuel tourism and corporatist political governance. By comparing the European diesel strategy to the Japanese petrol-hybrid avenue, it becomes clear that a different road would have both more effectively reduced CO2 emissions and pollutants.
Conclusion: Europe's car fleets have been persistently transformed from being petrol-driven to diesel-driven over the last 20 years. This paper investigates on how this came to be and why Europe took a distinct route as compared to other parts of the world. It also attempts to evaluate the outcome of stated goals of this transformation which was primarily a robust reduction in GHG emissions. We conclude that global warming has been negatively affected, and air pollution has become alarming in many European locations. More progressive development scenarios could have prevented these outcomes.