Spatial prediction in small area estimation

  • Small area estimation methods have become a widely used tool to provide accurate estimates for regional indicators such as poverty measures. Recent research has provided evidence that spatial modelling still can improve the precision of regional and local estimates. In this paper, we provide an intrinsic spatial autocorrelation model and prove the propriety of the posterior under a flat prior. Further, we show using the SAIPE poverty data that the gain in efficiency using a spatial model can be essentially important in the presence of a lack of strong auxiliary variables.

Download full text files

Export metadata

Metadaten
Author:Martin VogtORCiD, Partha LahiriORCiD, Ralf MünnichORCiD
URN:urn:nbn:de:hbz:tr5-10094
DOI:https://doi.org/10.59170/stattrans-2023-037
Parent Title (English):Statistics in Transition new series
Publisher:Statistics Poland
Document Type:Article (specialist journals)
Language:English
Date of OPUS upload:2024/09/12
Date of first Publication:2023/06/13
Publishing University:Hochschule Trier
Release Date:2024/09/12
Tag:CAR; Fay-Herriot; poverty estimation; spatial models
GND Keyword:Armut; Messung; Modellierung
Volume:24
Issue:3
First Page:77
Last Page:94
Departments:FB Wirtschaft
Dewey Decimal Classification:3 Sozialwissenschaften / 33 Wirtschaft
Licence (German):License LogoCreative Commons - CC BY-SA - Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International