
SPECIAL SECTION ON DISTRIBUTED COMPUTING INFRASTRUCTURE FOR
CYBER-PHYSICAL SYSTEMS

Received August 2, 2019, accepted August 17, 2019, date of publication September 9, 2019, date of current version October 15, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2940113

Node and Block-Based Development Tools for
Distributed Systems With AI Applications
MARCEL HAUCK 1, RÜDIGER MACHHAMER 2, LEVIN CZENKUSCH2, KLAUS-UWE GOLLMER2,
AND GUIDO DARTMANN2, (Senior Member, IEEE)
1Research Group Business Informatics and Media Management, Mainz University of Applied Sciences, 55128 Mainz, Germany
2Environmental Campus Birkenfeld, Institute for Software Systems, Trier University of Applied Sciences, 55761 Birkenfeld, Germany

Corresponding author: Marcel Hauck (marcel.hauck@hs-mainz.de)

This project was funded by Federal Ministry of Food and Agriculture (BMEL) project IoT-Pilot (https://iot-pilot.umwelt-campus.de/) grant
2818LD003. Sourcecode is available at https://iot-pilot.umwelt-campus.de/software. Parts of this work are based on the master thesis of the
first author. Special thanks to Anne-Kathrin Schirra and Peter Rock for the graphical abstract and the video, which was funded by Federal
Ministry of Education and Research (BMBF) project COSY (https://cosy.umwelt-campus.de/) grant 01IS17073A.

ABSTRACT Internet of Things (IoT) and Artificial Intelligence (AI) are one of the most promising and
disruptive areas of current research and development. However, these areas require deep knowledge in
multiple disciplines such as sensors, protocols, embedded programming, distributed systems, statistics and
algorithms. This broad knowledge is not easy to acquire and the software used to design these systems is
becoming increasingly complex. Small and medium-sized enterprises therefore have problems in developing
new business ideas. However, node- and block-based software tools have also been released and are
freely available as open source toolboxes. In this paper, we present an overview of multiple node- and
block-based software tools to develop IoT- and AI-based business ideas. We arrange these tools according
their capabilities and further propose extension and combinations of tools to design a useful open-source
library for small and medium-sized enterprises, that is easy to use and helps with rapid prototyping, enabling
new business ideas to be developed using distributed computing.

INDEX TERMS Distributed computing, Internet of Things, machine learning, rapid prototyping, visual
programming environments.

I. INTRODUCTION
Today we are at the fusion of two disruptive technological
developments: Internet of Things (IoT) and Artificial Intelli-
gence (AI). IoT is the term for the connection of billions of
machines world-wide, sensing an enormous amount of data.
Typical applications are:

• Intelligent mobility where vehicles are connected and
controlled by AI,

• Smart health, where data from millions of patients in
smart hospitals is collected,

• Industrial IoT where all machines within the production
are connected and synchronized and processes are opti-
mized.

Without intensive data analysis this information would not
generate new business ideas. Therefore, the integration of
AI in the IoT is the consequent evolution of the next years.
We give the reader a brief overview about the recent techno-
logical trends and the history of AI. Based on this overview,

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhen Ling.

FIGURE 1. Concept for IoT and AI tools (here with Ardublockly and
Node-RED).

we present state-of-the-art software tools for IoT and AI
and arrange them according to defined criteria. Small and
medium-sized enterprises (SMEs) often do not have qualified
programmers, IoT and AI specialists. In this paper we give a
review of software tools that enable SMEs to rapidly develop
new prototypes for IoT business ideas. As shown in Figure 1,
we use a tool to program a successful generic IoT device IoT
Octopus [1] based on the ESP8266.
Using IoT devices for new business ideas, programming

tools for the sensing, communication and signal processing

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 143109

https://orcid.org/0000-0003-1105-1519
https://orcid.org/0000-0002-0194-6194


M. Hauck et al.: Node and Block-Based Development Tools for Distributed Systems

must be developed (Embedded tools in Figure 1). With these
tools individual IoT devices can be configured for specific
applications. However, today IoT business ideas consist of
multiple aspects, such as subscriber and publisher of informa-
tion and data, cloud and databases and data analytics as well
as AI for analysis and prediction of data. Therefore, we also
need tools combining communication, data storage, cloud
services, and data analytics. This is given by the right part of
Figure 1 (Data Analytic Tools, here based onNode-RED from
IBM). The represented flows organize distributed computing
in Cyber-Physical Systems (CPS).

A. INTERNET OF THINGS AND CYBER-PHYSICAL SYSTEMS
CPS describe the technical development for equipping com-
mon real objects with network-capable embedded sys-
tems [2]. These embedded systems collect data from the
objects to send it via wifi or similar networks to IT applica-
tions or to deliver commands from the applications to affect
the object. This development can be subdivided into 3 lay-
ers, the application, communication and perception layer [3].
Using the example of a temperature controlled fan,1 the
temperature sensor and the speed controller of the fan are
implemented within the perceptual layer. The application
layer uses the measured data to generate the control com-
mands, which are transmitted via the communication layer.
The IoT stands for the sum of the possible (interconnected)
networks connecting the most diverse devices in all possible
applications.

B. ML IN IOT
Recent research indicates that IoT is very suitable for
Machine Learning (ML) applications. ML requires a large
amount of data to learn, which IoT/CPS can deliver. Instead
of programming the desired temperature of 27 degrees for
the fan from the above example, an ML approach would be
to collect additional environmental data such as day, wind
speed, outdoor temperature and the data to be considered
from the user (from their personal devices) and encourage
users to control the fan for the first few days according to
their behavior. The algorithm begins to learning the habit of
the person depending on the environmental data and starts
suggesting the perfect needs. The learning process will take
some time, but the prediction of the AI will more and more
often guess the desired setting correct and thus exceed a
static setting in the long run. Looking at current developments
in the field of speech and video recognition, smart home
applications already ease people’s lives.

C. SOFTWARE FOR ML/IOT
To keep attached to the different layers, for the application
layer powerful python libraries like scikit-learn or Tensor-
Flow exist, which provide the most common ML algorithms.
IoT devices like Arduino or ESP8266/ESP32-based chips

1which is a famous example to illustrate IoT, multiple tutorials are
avalaible, e.g. https://dzone.com/articles/esp8266-wi-fi-fan-controller

can be easily programmed with the Arduino IDE to perform
the tasks of perception layer, and the basic network skills
which fit the needs for an easy communication between
the devices is quite easy, due to modern smartphone usage.
Simple network knowledge of opening an access point or
accessing a network is common knowledge. The development
of applications similar to our fan, however, requires complex
knowledge of IoT, ML and intensive programming skills.

D. DISTRIBUTED COMPUTING
Latest research in the area of fog/edge computing leads to
resource optimization by a smart distribution of tasks between
participating devices, similarly, data flows have to be adapted
for complex cloud applications. IBM’s Node-RED offers
possibilities to organize these tasks in an easy-to-understand
way. Graphical elements organize data input and output, data
manipulation methods or the use of ML algorithms with
Python libraries. In addition, almost any program on any
computer in the network can be controlled close to real time.
Database operations or the use of web protocols such as
Message Queuing Telemetry Transport (MQTT) or Hypertext
Transfer (HTTP) are made available to a broad user commu-
nity in an easy-to-use way.

E. STRUCTURE
In this paper, we will give an introduction to basic
ML concepts for IoT in Section II-A-II-C. Subsequently,
in Section III, we introduce basic visual programming tools
for IoT and AI and present a combination of a block-based
programming tool for embedded programming as well as
a node-based tool for IoT platform development and data
analytics. Finally, in Section IV we present a case study in
which the selected tools are applied in an IoT use case and
give an outlook on further development and research.

II. MACHINE LEARNING OVERVIEW
Today, AI is a branch of computer science. The goal is to
enable machines to perform tasks intelligently. However, it is
not defined what intelligent means in this context. First appli-
cations can be understood as expert systems. In the 1970s,
systems were introduced that stored knowledge by a limited
set of rules and were able to draw conclusions from this [4].

Rule-based systems can result in fast decisions, but require
a high maintenance effort. The existing rule set must be
regularly updated and extended. In addition, it is hard to pro-
vide solutions for previously unknown situations. In complex
systems no new knowledge can be generated with it. Real AI
systems, on the other hand, should allow to find decisions
without a predefined set of rules, hence they should be able
to learn tasks based on given data.

Whereas AI can be regarded as a generic term,
ML describes the process of evaluating data with algorithms,
learning from it, and finally, making decisions or predic-
tions [5]. In general, the algorithms used inML can be divided
into three learning styles. If many data sets are available, that
have already beenmarkedwith known solutions, it is practical

143110 VOLUME 7, 2019



M. Hauck et al.: Node and Block-Based Development Tools for Distributed Systems

to use supervised learning. In unsupervised systems, the raw
data is sufficient to recognize patterns. In the third version,
the machines use feedback from the environment to adapt
their actions. This is often called enhanced or reinforcement
learning. In the following, we will introduce the basic con-
cepts and give a short summary for the use in IoT.

In ML, existing data (experience) is used to generate
knowledge. In the area of classification, the available data
can be assigned to classes. Examples are the differentiation
of e-mails into spam and non-spam, or the decision whether
a football player should be hired or not. Multiclass classifica-
tions such as customer groups are also possible.

Whereas a linear classification allows only discrete deci-
sions (Yes or No, −1 or +1), a logistic regression allows
the output of continuous values between 0 and 1. This cor-
responds to a probability which is a measure for the pre-
diction of an event. If an optimal separation of the data is
to be achieved, a support vector machine can be used. This
maximizes the distance of the dividing line or plane to the
two nearest data points of different classes.

A rather simple method of Regression is the Linear Regres-
sion. A weighting vector is optimized with the training data.
This allows predictions to be made for previously unknown
data points. Whereas the classification makes a strict separa-
tion, the output here is not limited to a value range. neural
networks (NN) can also be used for both classification and
regression. The foundations for this technique (machine neu-
rons) were already laid in the 1940s. The system can be seen
as a combination of many small single decision units. These
so-called Perceptrons are linked by weighted edges. Within
each unit, incoming signals are weighted and, after reaching
a predefined threshold value, passed on to their successors as
an output signal. For more details we refer to classical books
on neural networks [6] and latest research [7].

A. SUPERVISED LEARNING
Supervised learning (SL) divides the data into two parts
(training set and test set). The first part is used to train a com-
plex model, which afterwards can be tested with the second
part. This model can then be applied to previously unknown
data to make a decision or prediction. In many cases, the more
data, the better the ML model, and IoT can produce a large
amount of data and therefore, both terms fit together to train
models for unknown and complex systems.

Algorithm 1 KNN
Input: Data samples D; new sample x
Output: Class for sample x

Chose the k nearest neighbors to x from D
Identify the class, with the majority of points

The k-nearest neighbors algorithm (KNN) is often used
because of its simplicity and resistance to remote outliers.
For each data point in the test data, the k-nearest training
data points are selected [1]. The new data point can then be

assigned to the class that has the majority of these nearest
points. The algorithm is generally described as follows:

B. UNSUPERVISED LEARNING
Even if the existing training data is not labeled, patterns or
groupings can still be found. These algorithms find clus-
ters in the data. The data points contained should be very
homogeneous among each other and very heterogeneous with
respect to points of other groups. A representative of this
group is the K-Means algorithm. First, k random centers are
chosen for the clusters and the nearest points are assigned
to these centers. Then, for example, the mean value of the
points is determined as the new position of the center. This
reordering allows individual points to be attached to another
cluster. The procedure is repeated until the midpoints are no
longer shifted [8] or the classes of the data points are no
longer changed [9]. Finally, the k separated groups remain.
The result depends, among other things, on the choice of
the first centers. The functionality of the algorithm can be
summarized as follows:

Algorithm 2 K-Means
Input: Data set D; number of cluster k
Output: k Cluster with assigned data points and k

centers

Chose k random positions and define the centers
repeat

Assign to every Point in D the closest centre
Calculate the new positions of the centres (e.g. mean
of cluster samples)

until centers are not moved

C. REINFORCEMENT LEARNING
The above methods can be used if a lot of training data is
available from which knowledge can be generated. If there
is an environment holding currently little data, but which can
be simulated repeatedly, the use of reinforcement learning is
practical. In this environment there is an intelligent program
(agent). It is given a goal that it should achieve, for example
maximizing the points in a game. It receives feedback about
its success through rewards and punishments [10]. Over the
years, many ML algorithms have emerged. It can be seen
that they work better or worse depending on the application.
In order to find the best approach, there are so-called Cheat
Sheets which can help for an initial preselection. In Figure 2
the basic structures were summarized.

It is recommended to try out several approaches in par-
allel in order to achieve the best possible result. Experts
with deep knowledge about the algorithms and program-
ming languages are difficult to find for SMEs. Therefore,
we want to present an overview of possible visual devel-
opment tools for AI and also for the programming of IoT
devices.

VOLUME 7, 2019 143111



M. Hauck et al.: Node and Block-Based Development Tools for Distributed Systems

FIGURE 2. Decisions for different algorithms.

III. VISUAL PROGRAMMING ENVIRONMENTS
After an overview of basic AI techniques was provided in
the previous chapter, an introduction to visual development
environments is given now. In this section, we target two
different development aspects:

• IoT devices: Here we need tools for the programming of
the embedded hardware for the sensing, signal process-
ing and communication of IoT devices.

• Cloud and AI: Here we need tools to design the com-
plete IoT-platform with databases (clouds) and decision
making (AI).

The underlying concept of visual languages can be inter-
preted in two ways. On the one hand there are languages that
process visual information. This applies, for example, to the
representation of graphs [11]. On the other hand these con-
cepts have a collection of visual programming elements [12].
Only languages corresponding to the latter description are
relevant for this work.

Node based programming (NBP) describes a program-
ming paradigm that brings data as modular objects into a
node-based data flow. However, this does not have to be a
visual programming that offers support to technical layper-
sons.

In the following only programming environments are
examined, regardless of which visual programming language
(for example JavaScript) they are realized in. The name
VPE is used for this. They provide a framework in which
visual (programming) elements can be lined up. A previously
defined program code is then generated from the individual
components. It is often also possible to enter variable values
in form of input fields or selection lists. To set up and extend a
VPE there is often a development environment in which, for
example, new elements can be administered. The following
elements must be defined for the end user to be able to use
blocks:

• Graphic design (e.g. color of the block and contained
images / pictograms)

• Description texts (both labels and help texts or further
links)

• Interaction possibilities (Which values – e.g. numbers or
texts – may be entered? Which interaction possibilities
– e.g. selection lists – are there?)

FIGURE 3. Generation of Code from a graphic programming block.2

FIGURE 4. Comparison of Ardublock and Scratch.

• Interfaces (Are there input or output possibilities to other
blocks?)

• Generated code (Which program code should be gener-
ated dynamically?)

Kurihara et al. state three reasons for the use of VPE [13].
First, no syntax errors can occur because no code manipu-
lation is necessary. Second, the programming environment
can be described in natural language so that it is easy for the
user to understand. Third, even complex functions with case
distinctions and dependencies can be integrated into simple
building blocks. This prevents necessary tasks, such as type
conversions, from not being used.

An example for the graphical programming of the single
board computer micro:bit using the VPE Microsoft Make-
Code is represented in Figure 3.

The code on the right is automatically generated from
the block on the left. This example shows the reduction of
complexity, as the user does not need to know how to address
the radio unit of the device.

A. CATEGORIZATION
In general, there are two categories in which VPE can be
classified: block-based programming (BBP) and node-based
programming (NBP). BBP refers to environments in which
graphical blocks are connected via matching recesses, such
as in a puzzle. Especially for young users the Mas-
sachusetts Institute of Technology (MIT) developed Scratch.
In Figure 4b a short example application is shown. From the
selected blocks a program code usable by the computer is
automatically generated in the background. The user only has
to take care of the semantic correctness of the application.
The displayed program can be used to move a figure, change
its color or output a sound. ArduBlock is a second VPE

2https://makecode.microbit.org/
3https://www.umwelt-campus.de/iot-werkstatt/
4https://scratch.mit.edu/

143112 VOLUME 7, 2019



M. Hauck et al.: Node and Block-Based Development Tools for Distributed Systems

FIGURE 5. Comparison of BPMN with NBP.

for programming microcontrollers. Based on the Arduino
platform, sensors, actuators or displays can be controlled.
Figure 4a shows a simple traffic light circuit.

The aforementioned development areas are characterized
by the use of case distinctions (IF-THEN-ELSE) and loops
(WHILE). In companies, application steps are often modeled
as processes. These can be represented by business pro-
cess model and notation (BPMN), for example. As visible
in Figure 5a, process steps are connected with lines, which
results in a process. This pattern is also used by NBP envi-
ronments. Via connections, data can be exchanged between
the individual nodes. An example of this is the process
shown in Figure 5b. The application Node-RED of the com-
pany IBM offers function modules (e.g. MQTT connectors),
which are suitable for development in the IoT area. In the
following we compare existing frameworks based on their
capabilities.

A total of 29 VPEs were determined in the area of the BBP
(Table 1). The presented VPEs are partly based on each other.
In Figure 6, the development is shown based on Scratch.
In NBP the overview looks a bit different. Of the 17 VPEs

determined, only three can be called via the browser (Flow,
Flowhub IDE, and Node-RED). Most of the applications also
have a proprietary license (e.g. RapidMiner Studio). Enrect
can be seen as a special case. This system uses both blocks
and connections between them. It is available in Japanese,
Estonian, and English and focuses on continuing education
with large icons.

B. VPE TOOLS FOR SMES
Low-coding platforms are very easy to handle, but can usu-
ally only be used in a special case (e.g. image recognition).
Text-based coding (e.g. with a code editor) allows a very high
flexibility. However, computer science knowledge is required
to write code in a programming language. VPEs are a mixture
of both worlds. Due to their ready-made building blocks they
are quite easy to use. Moreover, they are not bound to a
specific purpose. Therefore, they are a perfect tool for SMEs,
to develop new business ideas. Today, the early development
of new prototypes is very important for the success of a
company. Therefore, in this section we want to present a com-
bination of VPEs that allow this rapid prototyping approach
and can lead to an acceleration of new product ideas in IoT
and AI.

Both BBP and NBP environments are suitable for applica-
tion in a SME. Only BBP can be applied for programming

5https://docs.camunda.org/manual/7.6/reference/bpmn20/events/bpmn/
event-conditional.svg

the IoT kit utilized in the use case, since it has IF-THEN-
ELSE-based programming. However, they are not suitable for
further processing of the data usingML algorithms. Therefore
one BBP- and one NBP-VPE are selected below. Table 1 con-
tains open source applications as well as proprietary applica-
tions. Table 2 gives an overview of the selection criteria used.
Finally, two BBP candidates meet all of our requirements:

The BlocklyDuinoReboot programming blocks can be
translated into Arduino code as well as into other program-
ming languages (e.g. PHP or Lua). The respective code can
be called up via the tabs at the top of the screen. The system
is not responsive, i.e. it does not adapt to the size of the
display device. In addition, there is no component integrated
that can be used to communicate with the Arduino environ-
ment. This must be integrated separately, for example from
BlocklyDuino.
Ardublockly on the other hand offers a responsive web

design. It can also be used to implement desktop applications
which run without an additional browser. In contrast to the
aforementioned environment, the program code generated by
the environment is displayed here. In Figure 7 this can be
seen on the right side of the screen. Changes to the code are
indicated by a coloured marking. Users can see the effects
of block changes directly. In addition, more colored elements
(e.g. in the header area) are used in the design of the entire
interface.

The tool contains a server application developed in
Python that can communicate with the Arduino environ-
ment. For example it sends the generated Arduino code to the
Command Line Interface (CLI) arduino_debug.exe,
which compiles and uploads the machine code to the micro-
processor. The JavaScript (JS) files used in the frontend can
optionally be compressed using the Closure Compiler.6 They
are sent to a Google server and sent back optimized. The
environment is already used productively (e.g. byKniwwelino
or Oxocard) and can therefore be considered as stable. Due
to the clear advantages of Ardublockly it is chosen as the BBP
environment.

The decision for a NBP can be made quickly. Table 1
contains only five environments with open source licensing:
KNIME, Luna Studio,Orange, and RAPTORwith GNU GPL
andNode-REDwith Apache 2.0. Of these remaining environ-
ments, onlyNode-REDwas developed with web technologies
(e.g. JS) and can be used independently of the end device.
It corresponds to the requirements of the rapid prototyping
for business ideas in IoT and AI, since it was developed
especially for the use in the IoT area. In the freely accessible
library7 it is possible to download over 1.000 predefined
processes and more than 1.700 extensions. There are also
additional packages included that provide ML nodes. This
makes it possible to provide AI algorithms as simple flow
elements.

6https://developers.google.com/closure/compiler/
7https://flows.nodered.org/

VOLUME 7, 2019 143113



M. Hauck et al.: Node and Block-Based Development Tools for Distributed Systems

TABLE 1. VPEs, BSD: Berkeley software distribution.

143114 VOLUME 7, 2019



M. Hauck et al.: Node and Block-Based Development Tools for Distributed Systems

FIGURE 6. Further development of a VPE using the example of scratch.

TABLE 2. BBPs.

FIGURE 7. Sample application in Ardublockly.

IV. COMBINATION TOOL AND IOT CASE STUDY
The previously selected tools Ardublockly and Node-RED are
combined to a tool chain uploaded to https://iot-pilot.umwelt-
campus.de/software. We extend this tool chain with super
blocks of the most important sensors and actuators in order
to offer an intuitive sensor connection for almost any physical
quantity, such as distance, temperature or luminous intensity.
We are constantly expanding these blocks with functions such
as providing an access point, a LoRa interface or control of
actuators, but the goal is to form a broad community that

FIGURE 8. Data generation [1].

participates in the further development of the system. The
generation of a new IoT idea can now take place via an
interface as follows: First, the user can configure the IoT
device in Ardublockly and select multiple sensors, actuators,
and communication protocols such as MQTT. In a second
step, the user can export the MQTT-configuration to Node-
RED via a cut& paste-mechanism. Finally, the user can set-up
the entire platform by Node-RED including multiple data
analytic tools provided by common ML-frameworks.

A. SOUND-BASED LOCALIZATION
The following section describes how to use the combina-
tion tool in the use case IoT-based sound localization. It
is based on the algorithms and procedures developed by
Dziubany et al. [1]. The idea is localize the position of an
object in space using a single, inexpensive microphone and
a loudspeaker. The speaker always remains unchanged in the
same place. To do this, a part of a tabletop is parceled into
16 square, equally sized areas, which are assigned a consecu-
tive number. In each of the sections, five soundmeasurements
– a total of 80 – are taken, which are processed and saved
as a file (training data). Three representatives per square are
determined using the K-Means algorithm. An IoT kit is used
to record the data. Figure 8 shows the distributed process
of data generation. The IoT kit triggers the sound output
via Node-RED and MQTT using the topic play. Due to the
limited resources, the raw data is collected as bytes, which
are then transmitted in 20 MQTT packages (limited package
size) to the Node-RED device to first compute integer values.
These values are normalized using MATLAB for further
processing in the ML nodes.

For the training phase described above, a sequence in
Ardublockly was created. Figure 10, shows the finished
configuration. Besides general blocks (control structures,
MQTT, hardware button) three individual elements (micro-
phone recording, send recording via MQTT, and reset mea-
sured value memory) can be seen, which were implemented
for this use case. Due to the simple creation with the Block-
lyFactory8 the integration takes only a few minutes. Thus,
the process of training data recording is covered and can be
easily varied in the VPE.

In Figure 9, the generated Node-RED flow for the eval-
uation of the training data is mapped using ML algorithms.

8https://blockly-demo.appspot.com/static/demos/blockfactory/index.html

VOLUME 7, 2019 143115



M. Hauck et al.: Node and Block-Based Development Tools for Distributed Systems

FIGURE 9. Training of the localization in Node-RED.

FIGURE 10. Training phase Ardublockly.

First the training file is read in there. The Splitter node groups
five data samples and sends them to the K-Means node.
There, three representatives are generated in each case. The
Extractor node reads the attribute cluster_centers_
and sends it to the following join node, which unites all
representatives in an array.9

The function node Prepare Data adds labels to the training
data, since they are required for the use of a SL proce-
dure. Since the Node-RED library contrib-machine-
learning contains several SL algorithms, they can
be tested very easily in parallel without programming

9Information on the available attributes at https://scikit-learn.org/
stable/modules/generated/sklearn.cluster.KMeans.html

FIGURE 11. Accuracy determination with test data in Node-RED.

knowledge. The library accesses ML functions from pythons
scikit-learn and TensorFlow. Figure 9 shows the whole pro-
cess with the creation of six ML learning algorithms.

The sound localization is to predict in which spatial area
of the table they were recorded for previously unknown mea-
sured values. If the previously created 16 K-Means models
were individually checked, the process would take a very
long time and produce 16 different results. Therefore the SL
algorithm KNN based on the K-Means representatives was
chosen as the learning method. It can be used to quickly
figure out which label the nearest neighbors have. This can
then be assigned to the new measured value.

In addition to the 80 training data samples, a further 12 test
values (in total 192) are available for each of the 16 areas.10

They can be used to estimate how well the previously created
models can predict new values. As can be seen in Figure 11,
the training data is read twice into Node-RED. The upper
node only reads the previously logged correct results for later
comparison with the forecast. The lower node loads the actual
test data in order to classify them according to different ML
algorithms and thus check their suitability for the application.
The corresponding Ardublockly blocks for the test phase is
given in Figure 12.

Table 3 shows the results of a test run. Please note that the
respective settings have not been optimized. The achieved
values could be improved by further configurations. KNN
provides the best result, which is why it can be considered
as useful for a IoT-based sound localization. In addition,
the application example is kept very simple. In a more
complex application, different devices could process the
individual algorithms in order to transmit their results to a
central unit.

As previously described, the system can be used to evaluate
previously unknown measurements using the model created
in the training phase. A new Ardublockly and Node-RED
sequence has been set up to present the results even better
to the user.

First, a new measured value is recorded with Ardublockly.
The sketch required for this can be found in Figure 12.
An MQTT node (MQTT Send Record) is integrated, which
sends the recorded sound values to an MQTT broker (MQTT
Basics). The return from theKNN model is output on the LED
matrix of the IoT kit. To receive the values in Node-RED,

10https://github.com/dziubany/ML-Localization/tree/master/dataPaper

143116 VOLUME 7, 2019



M. Hauck et al.: Node and Block-Based Development Tools for Distributed Systems

TABLE 3. Accuracy of ML algorithms. Own representation.

FIGURE 12. Testing phase Ardublockly.

FIGURE 13. Export Node-RED settings from Ardublockly.

the settings for the MQTT connection and the Topic would
normally have to be transmitted manually.

To simplify the process and prevent transmission errors,
a new Node-RED Export button is implemented in
Ardublockly. A code of the nodes used for Node-RED is
generated from the information readwith it. This can easily be
imported via the clipboard (Menu→ Import→ Clipboard).
Figure 13 shows a generated code (frame), the clipboard
button (frame) and the hint to paste (frame) in Node-RED.

In Figure 14, the flow for processing the incoming signal
data and evaluation is shown in Node-RED. In the individual
function blocks (ByteToInt, prepare data and ArrayToString)
the information received from the microphone is processed.
This processing is especially for the method of sound local-
ization and therefore does not have to be included in the

FIGURE 14. Node-RED configuration for sound locating predictions.

library as generalized Node-RED nodes. The value predicted
from theKNN model is not only displayed on the LEDmatrix
of the IoT kit, but also as text in a Node-RED dashboard.
For this the Node-RED library node-red-dashboard11

is used.
This offers the possibility for the user to operate and evalu-

ate theNode-RED process without knowing the program code
or the Node-RED flows. It is therefore an additional level of
abstraction that allows it to be used at an even higher level.
Here it is also possible, for example, to start the sound mea-
surement bymeans of buttons or to display receivedmeasured
values directly as a graph. However, the display formats are
quite limited and, for example, in the case of two-dimensional
diagrams as Y-axis, a time specification must be used.

A free plot, as it is possible with individual configurations
in the Python libraryMatplotlib12 is therefore not realizable.
The use case presented in this section shows that the

selected development tools can map the entire process from
data generation, data preparation and data processing to
user-friendly data representation.

B. USER INTEGRATION
The combination of the tools will be made publicly avail-
able on the website of research project IoT-Pilot (https://
iot-pilot.umwelt-campus.de/ ). SMEs and interested private
people are instructed in tutorials to use them for their own
purposes. We are looking forward to
• broad interest and participation in crowd applications for
smart city environments on the part of private users.

• rapid prototyping attempts of SMEs to test their new
business ideas.

In the context of an IoT maker sphere SMEs can advertise
projects to a broad community of IoT-experts, students or
laymen interested in CPS, IoT or ML. Laymen should as
well be animated to publish their own projects. The mutual
remuneration of the project partners can be handled via crypto
technologies using smart contracts in order to enable fair

11https://flows.nodered.org/node/node-red-dashboard
12https://matplotlib.org/

VOLUME 7, 2019 143117



M. Hauck et al.: Node and Block-Based Development Tools for Distributed Systems

compensation in micropayment e.g. for crowd sensing, or to
compensate copyrights between idea developers and realiz-
ing SME. Distributed cloud computing systems allow data
which is delivered by broad user communities in order to
gain insights from this data that will be of value to these
communities. Distributed cloud computing system enables
data to be delivered from a broad user base to evaluate them
and gain insights which adds value for these communities.

V. CONCLUSION
The aim of this paper was to evaluate and further develop
existing development tools that can be used in IoT- and
AI-based business models in SMEs. The theoretical basics
served as a basis for the practical implementation. The
goal could be achieved by a combination of several VPE.
In order to enable as many developments as possible, the sys-
tem should be universally applicable and have a modular
structure.

BBP environments are suitable for the programming of
microcontrollers. They offer the advantage that they can be
easily translated into program code. It must be possible to
use new sensors (e.g. microphone) and boards (e.g. ESP32).
For this purpose the libraries published by the hardware man-
ufacturers must also be able to be integrated. The application
should be web-based and responsive so that it can also be
accessed on different devices. Only Ardublockly meets the
aforementioned requirements and was therefore selected as
BBP. After enrichment with our super blocks, it meets all
our application requirements. However, it turned out to be
disadvantageous that it is not well suited for process-based
data processing and preparation.

In this area, NBP environments can play out their advan-
tages. Although they are not suitable for programming micro-
controllers, they can link the collected information with
available company data and evaluate it using AI procedures.
The node-based representation facilitates the use, since no
own program code must be developed. Furthermore, different
approaches (e.g. NN vs. KNN) can be compared quickly.

The web-based NBP Node-RED was selected to avoid
media discontinuity when switching to a classical applica-
tion program. Thanks to its open source licensing and many
available extensions, it is well suited for the use in IoT-based
enterprises. As shown in this paper, targeted adaptations are
useful, for example to be able to use additional functionalities
such as new ML algorithms.

As the use case IoT sound localization shows, the system
offers tools that cover the entire Data Analytics tool chain
from data collection to data presentation using distributed
systems.

The selected systems are not tailored to a specific field
of application yet. Thanks to their ease of use and univer-
sal expandability, even new business models can emerge.
Medium-sized companies can digitize analog processes and
even use complex learning processes from the field of AI to
further improve their products or to develop new ones. More
experienced users can distribute complex tasks to different

devices or have the distribution performed automatically
using ML.

ACKNOWLEDGMENT
This project was funded by Federal Ministry of Food
and Agriculture (BMEL) project IoT-Pilot (https://iot-pilot.
umwelt-campus.de/) grant 2818LD003. Sourcecode is avail-
able at https://iot-pilot.umwelt-campus.de/software. Parts of
this work are based on the master thesis of the first author.
Special thanks to Anne-Kathrin Schirra and Peter Rock for
the graphical abstract and the video, which was funded by
Federal Ministry of Education and Research (BMBF) project
COSY (https://cosy.umwelt-campus.de/) grant 01IS17073A.

REFERENCES
[1] M. Dziubany, R. Machhamer, H. Laux, A. Schmeink, K.-U. Gollmer,

G. Burger, and G. Dartmann, ‘‘Machine learning based indoor localiza-
tion using a representative k-nearest-neighbor classifier on a low-cost
IoT-hardware,’’ in Proc. 26th Eur. Signal Process. Conf. (EUSIPCO),
Sep. 2018, pp. 2050–2054.

[2] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao,
‘‘A survey on Internet of Things: Architecture, enabling technologies, secu-
rity and privacy, and applications,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1125–1142, Oct. 2017.

[3] H. Xu, W. Yu, D. Griffith, and N. Golmie, ‘‘A survey on industrial Internet
of Things: A cyber-physical systems perspective,’’ IEEE Access, vol. 6,
pp. 78238–78259, 2018.

[4] S. J. Russell, P. Norvig, and E. Davis, Artificial Intelligence: A Modern
Approach (Artificial Intelligence), 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2010.

[5] M. Copeland. (Jul. 2016). The Difference Between AI, Machine
Learning, and Deep Learning|NVIDIA Blog. [Online]. Available:
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-
intelligence-machine-learning-deep-learning-ai/

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016. [Online]. Available: http://www.
deeplearningbook.org

[7] W. G. Hatcher and W. Yu, ‘‘A survey of deep learning: Platforms,
applications and emerging research trends,’’ IEEE Access, vol. 6,
pp. 24411–24432, 2018.

[8] S. Marsland, Machine Learning: An Algorithmic Perspective (Machine
Learning Pattern Recognition). Boca Raton, FL, USA: CRC Press, 2009.

[9] D. Singh and C. K. Reddy, ‘‘A survey on platforms for big data analytics,’’
J. Big Data, vol. 2, no. 1, p. 8, Dec. 2015.

[10] A. Nandy and M. Biswas, ‘‘Reinforcement learning basics,’’ in Reinforce-
ment Learning. Berkeley, CA, USA: Apress, 2018, pp. 1–18.

[11] K. Zhang, Visual Languages and Applications. New York, NY, USA:
Springer, 2007.

[12] G. De Luca, Z. Li, S. Mian, and Y. Chen, ‘‘Visual programming language
environment for different IoT and robotics platforms in computer science
education,’’ CAAI Trans. Intell. Technol., vol. 3, no. 2, pp. 119–130,
Jun. 2018.

[13] A. Kurihara, A. Sasaki, K. Wakita, and H. Hosobe, ‘‘A programming
environment for visual block-based domain-specific languages,’’ Procedia
Comput. Sci., vol. 62, pp. 287–296, Jan. 2015.

MARCEL HAUCK received the B.Sc. degree in
media, IT, and management from the Mainz Uni-
versity of Applied Sciences and the M.Sc. degree
in media informatics from the Environmental
Campus Birkenfeld, Trier University of Applied
Science, in 2018. He is currently pursuing the
Ph.D. degree with the Research Group Business
Informatics and Media Management, Mainz Uni-
versity of Applied Sciences, and also with the
Johannes Gutenberg University of Mainz.

143118 VOLUME 7, 2019



M. Hauck et al.: Node and Block-Based Development Tools for Distributed Systems

RÜDIGER MACHHAMER received the master’s
degree in computer science from the Trier Univer-
sity of Applied Sciences, Environmental Campus
Birkenfeld, Germany. He is currently pursuing the
Ph.D. degree with the Research Group Distributed
Systems at the Institute for Software Systems
(ISS). His research interests are in Machine Learn-
ing, Online Learning and Internet of Things.

LEVIN CZENKUSCH received the B.Sc. degree
in computer sciences from the Trier Univer-
sity of Applied Science, Environmental Campus
Birkenfeld, in 2018. He is currently pursuing the
M.Sc. degree while working with the Research
GroupDistributed Systems at the Institute for Soft-
ware Systems (ISS).

KLAUS-UWE GOLLMER received the Diploma
in Biomedical Engineering from University of
Applied Sciences in Hamburg in 1987 and the
Diploma in Electrical Engineering from Technical
University Hamburg-Harburg in 1991. He received
the Ph. D. from University Hannover in 1996.
Since 1999 he is Professor for Modelling and
Simulation at Trier University of Applied Science.
He is a member of the IoT Expert Group of the
German National Digital-Summit. His major

research interests include Internet of Things and Machine Learning.

GUIDO DARTMANN received Diploma and
Ph.D. degrees from RWTH Aachen University,
in 2007 and 2013, respectively. Since 2016, he has
been a Professor of distributed systems with the
Trier University of Applied Science. He is a
member of the IoT Expert Group of the German
National Digital Summit and a Founding Member
of the IEEE Special Interest Group on Big Data
Intelligent Networking. His current research inter-
ests include distributed systems, hardware soft-

ware co-design, and machine learning.

VOLUME 7, 2019 143119


