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Abstract: Gait analysis is a systematic study of human 
movement. Combining wearable foot pressure sensors and 
machine learning (ML) solutions for a high-fidelity body pose 
tracking from RGB video frames could reveal more insights 
into gait abnormalities. However, accurate detection of heel 
strike (HS) and toe-off (TO) events is crucial to compute 
interpretable gait parameters. In this work, we present an 
experimental platform to study the timing of gait events using 
a new wearable foot pressure sensor (ActiSense System, IEE 
S.A., Luxembourg), and Google's open-source ML solution
MediaPipe Pose. For this purpose, two StereoPi systems were
built to capture stereoscopic videos and images in real time.
As a proof of concept, MediaPipe Pose was applied to one of
the synchronised StereoPi cameras, and two algorithms (ALs)
were developed to detect HS and TO events for gait analysis.
Preliminary results from a healthy subject walking on a
treadmill show a mean relative deviation across all time spans
of less than 4 % for the ActiSense device and less than 16 %
for AL2 (33% for AL1) employing MediaPipe Pose on
StereoPi videos. Finally, this work offers a platform for the
development of sensor- and video-based ALs to automatically
identify the timing of gait events in healthy individuals and
those with gait disorders.

Keywords: Human gait, Risk of falls, Computer vision, Pose 
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1 Introduction 

Walking is crucial for independent mobility, activities of daily 
living, and quality of life [1]. Physical and mental impairments 
often cause measurable differences in a person's gait pattern, 
such as a decrease in velocity, shorter step, and stride length, 
as well as changes in step width [2]. These differences could 
affect dynamic margins of stability, especially in the elderly, 
and increase the risk of falls [2]. The analysis of human gait 
has applications in sports, physical rehabilitation, clinical 
assessment, and many other fields [3]. Gait patterns are 
mainly characterised by differences in limb movements, a 
person’s velocity, ground reaction forces, and changes in 
ground contact [3]. Several platforms are available on the 
market to identify gait patterns and validate the accuracy of 
estimated gait events including video images, force plate 
measurements and pressure sensing platforms [3]. However, 
most techniques are limited to expensive gait analysis 
laboratories such as instrumented walkway and do not 
necessarily reflect the dynamics of gait while walking in non-
laboratory environments [2].  
     Body-worn sensors such as accelerometers are most 
commonly used for gait measurements outside the laboratory 
[3]. Here, force sensitive resistors or foot switches have the 
potential to evaluate the accuracy of an accelerometer-based 
gait analysis system [1], [3]. Recent developments combine 
insole-based force sensing resistors with accelerometers such 
as the ActiSense System (IEE S.A., Luxembourg [4]) to 
support diabetic patients in monitoring their health status [5]. 
Such a system could be used without additional equipment, 
cost, or inconvenience to examiners or patients. 
     In addition, recent studies show advances in 2D video-
based pose estimation for automated movement analysis [6]. 
The learning algorithms (ALs) at the core of human pose 
estimation solutions use networks that are generally trained on 
large datasets containing images of different individuals [6]. 
This often results in robust networks that are capable of 
detecting body landmarks in new images beyond the training 
dataset. However, there remains a critical need to evaluate 
those video-based approaches [1].  
     In this work, an experimental platform for the analysis of 
gait events is presented, which provides comprehensive access 
to hardware and software components by combining a smart 
insole-based foot pressure sensing device (ActiSense System) 
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with stereoscopic cameras (StereoPi) for a 2D video-based 
pose estimation (Google’s MediaPipe Pose). StereoPi is an 
open-source stereoscopic camera based on Raspberry Pi [7]. 
The low-cost system can capture and process real-time 
stereoscopic video and images. It opens up countless 
possibilities in robotics, virtual reality, computer vision and 
many other fields [7]. MediaPipe Pose is a machine learning 
(ML) solution for body pose tracking, interfering 33
landmarks and a background segmentation mask on the whole
body from RGB video frames utilizing Google’s BlazePose
research [8].

2 Methods 

This work describes the design of an experimental platform for 
gait event analysis which combines the ActiSense System and 
a custom-built StereoPi system. ALs were developed for gait 
event detection using Google's MediaPipe Pose ML solution. 
Both systems are used to detect and compare critical gait 
events. To estimate gait parameters of each gait cycle 
associated with the stance and swing phase, the detection of 
heel strike (HS) and toe-off (TO) events are crucial [3]. Both 
events were detected by the ActiSense foot pressure signals 
and estimated locations of the pose landmarks (left/right ankle, 
heel, and foot index) using the MediaPipe Pose ML model 
employed on the synchronised StereoPi system. Additionally, 
the foot pressure sensor measures the ground contact force 
(appears in stance phase) which has a significant impact on the 
walking stride of a person. As a proof of concept, a healthy 
subject (female, 23 years old) walked on a non-instrumented 
treadmill to generate gait data. The data set comprises 4 data 
sequences from the synchronised StereoPi system and 
ActiSense foot pressure signals.  

2.1 ActiSense System 

The ActiSense system (IEE S.A., Luxembourg) was used to 
measure human gait. Figure 1 shows IEE's sensor prototype, 
which measures foot pressure in real time, ranging from 250 
mbar to 7 bar [4]. The electronics unit has an integrated 
accelerometer and gyroscope. Foot pressure, acceleration, and 
angular velocity signals are internally synchronised and were 
recorded at a frequency of 200 Hz. The time series data were 
analysed offline with custom-written software in MATLAB™ 
(R2020a, MathWorks Inc., USA). For this purpose, a Gaussian 
filter (𝛿 is 5, the number of coefficients is 7) was applied to 
smooth the pressure signals. To detect the gait events of HS 
and TO, a simple threshold detection method was employed 
on the foot pressure signals. A set of fixed, observable 
thresholds was defined for each recorded data sequence.  

Figure 1: IEE’s ActiSense system, consisting of an electronic 

control unit (black enclosure, top left) and an insole comprising 8-

high-dynamic pressure cells (bottom left). Illustration of a typical 

walking pressure profile (top right), including a 3D foot plantar load 

distribution reconstruction (bottom right). [4] 

2.2 StereoPi cameras 

The StereoPi system built for this work, consists of two 
StereoPi boards V1 and two Raspberry Pi Compute Modules 
3 Lite. Figure 2 shows the system which operates two pairs of 
Raspberry Pi cameras V1 simultaneously and is designed to 
record stereoscopic images and videos. 

Figure 2: StereoPi system with Open CV image, build from two 

StereoPi boards, two Raspberry Pi Compute modules and four 

Raspberry Pi Cameras. 

The camera modules are built on OmniVision’s 1.4-micron 
OmniBSITM pixel architecture. The OV5647 offers high 
performance 5-megapixel photography with a maximum 
image transfer rate of 15 frames per second (fps) (2592 x 1944 
pixels) [7]. For the detection of HS and TO events, we used 30 
fps with an active array size of 640 x 480. For data acquisition, 
each of the four cameras were integrated in angle-adjustable 
housings and mounted on adjustable tripods (Figure 2). The 
StereoPi cameras were positioned on the side of the treadmill 
to capture the entire body of the healthy test subjects. 
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     The StereoPi boards were synchronised by wiring their 
peripheral general-purpose inputs/outputs (GPIOs). Voltage 
changes on the GPIOs in combination with software interrupts 
are used to trigger the videos synchronously. Once a video 
recording is triggered via a command in the terminal, the 
software part communicates with the GPIO driver. A Python 
script sets the GPIOs and synchronises the Raspberry Pis' [7]. 
However, to control the timing of the trigger pulse, a new 
script was written in C++. Test recordings showed a delay 
ranging from 10 ms to 70 ms caused by the synchronisation 
via the GPIOs. The cameras were calibrated using the 
calibration script in StereoPi OpenCV library to computes the 
focal length, centring of the sensor on the optical axis, and the 
lens distortion. 

2.3 Development of algorithms for gait 
event detection 

Two ALs were developed in Python to detect the gait events 
HS and TO, based on the estimated MediaPipe Pose landmarks 
imprinted in each video frame. As a proof of concept, we 
tested the ALs with a single StereoPi camera placed on the 
right side of the treadmill. To detect both gait events in pre-
recorded videos automatically, the angles between the 
estimated pose landmarks (x and y coordinates) on each foot 
with respect to the hip were calculated with AL1 (four angles). 
Since the calculation of two angles for both legs could be 
sufficient, AL2 was introduced for comparison. Figure 3 
illustrates both ALs. 

Figure 3: Schematic sketch of the angle calculations for both ALs 

based on MediaPipe’s landmarks. AL2 applies in both directions. 

In order to calculate the angles, we consider the lower 
extremities as a pendulum; when an event occurs, the 
corresponding angle is maximum. For this purpose, the actual 
value of an angle is compared with the previous and 
penultimate value. To trigger an event, the previous angle has 
to be larger than the actual and penultimate angle. 
Subsequently, the time difference between the triggered events 

is used for analysis and displayed in a status box in the 
processed videos.  
     If at least two consecutive gait events are detected by one 
of the ALs, the two corresponding time stamps are used to 
calculate the time difference between both gait events. 
Subsequently, the ALs splits the videos into single frames and 
each frame is analysed individually by MediaPipe Pose. In the 
next step, the ALs calculates the angles based on the extracted 
landmarks as illustrated for AL1 in Figure 3. Both ALs were 
compared to the video. The gait events were manually labelled 
by visual inspection of the video frames and served as video 
reference labels (VRLs).   

3 Results 

The healthy subject walked on a non-instrumented treadmill 
for 60 s with an adjusted speed of 4 km/h. Table 1 shows the 
results of the gait event analysis and Table 2 some details. A 
total of 84 HS and 83 TO events were counted, resulting in 41 
gait cycles for each leg side. Consequently, we labelled 167 
gait events in the recorded video (one TO right event 
excluded). The mean relative deviation in Table 1 is defined 
as the average of all time spans between two consecutive 
events detected by the ALs with respect to the VRLs. Table 1 
shows a mean relative deviation of less than 33 % for AL1 and 
16 % for AL2 using MediaPipe’s landmarks. Both ALs 
detected all TO events.  

Table 1: Comparison of the two ALs with the VRLs captured from 

the StereoPi video. 

AL1 detected a higher number of HS events compared to AL2 
(Table 1). In contrast, the deviations of the determined time 
spans to the VRLs by AL2 are smaller than the deviations by 
AL1. However, a considerable number of HS events on both 
feet were overwritten by TO events within a frame. These pose 
estimation errors were caused by time delays in the detection 
of HS events when the succeeding TO event had already 
occurred.  In addition, the ActiSense System was compared 
with the VRLs. We have added the results of the two ALs 
(separated into left and right foot) for completeness. The 
results of the gait event analysis are shown in Table 3. The 
ActiSense system detected all gait events when applying the 
threshold method to the foot pressure signals. Table 3 shows a 
mean relative deviation on both feet of less than 4 % for 
ActiSense in relation to the VRLs. In contrast, the mean 
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relative deviation over all time spans, with respect to the 
VRLs, is significantly higher for both ALs using MediaPipe’s 
landmarks. 

Table 2: Examples of gait cycles. Corresponding time spans and 

deviations of the ALs in relation to the VRLs. 

Table 3:  Comparison of the ActiSense System with the VRLs 

recorded from the StereoPi video. 

4 Discussion 

The presented setup offers comprehensive access to hardware 
and software components to study the timing of gait events. 
This is particularly important for the computation and 
assessment of spatio-temporal gait parameters. However, a 
significant number of HS events could not be detected. To 
solve this occlusion problem as reported in the literature [6], 
we will analyse the performance of the ALs using video 
recordings from different perspectives and with different 
frame rates. The ALs will be applied to all StereoPi cameras 
for gait event detection from multiple viewpoints. The data 
could be correlated to improve the detection of HS events. In 
addition, we will implement methods found in the literature to 
detect gait events using the acceleration and angular velocity 
signals of the ActiSense System [3].  
     Moreover, digital image correlation techniques could be 
applied on a circular setup with multiple synchronised 
StereoPi cameras to measure the 3D shape and 3D deformation 
of the imaged foot. In recent studies, this technique has been 
used for lower limb imaging to automatically design 
prostheses [9]. 
     Future work will focus on improving the methods, a 
systematic gait analysis with the four StereoPi cameras, and 
the development of ALs for automatic detection of gait events. 

Hence, will collect gait data from several healthy elderly 
subjects. The experimental setup presented in this work will 
be integrated into the MoveSenseAI project in the future to 
study gait patterns in patients with gait disorders. 
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