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Abstract: Electric drive systems are increasingly used in automobiles. However, the com-
bination of comfort, dynamics and safety requirements places high demands on the torque
accuracy. The complex interplay of battery, inverter and electrical machine causes a lot of
system uncertainties based on parameter fluctuations and measurement errors that influence
the system performance. In this paper these influences on the closed loop torque control are
analyzed and quantified using a variance based sensitivity analysis. The method enables to
connect the variance of the torque accuracy with the parameter uncertainties causing this
variance. Moreover, it quantifies the influences of the parameters independent of the complexity
of the analyzed system. In addition, two methods to ensure convergence of the estimated variance
based sensitivity measures are proposed. The results of the analysis are presented for 19 static
working points of an battery electric drive system.

Keywords: Sensitivity analysis, electrical drive, BEV, electromobility, control systems, Monte
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1. INTRODUCTION

Electric drives are increasingly used in the powertrain of
automobiles. Due to high safety demands the requirements
on the torque accuracy of the electric drive system are
considerably high. Because the direct measurement of the
torque is to elaborate, it is indirectly calculated based
on the measured phase currents of the drive. However,
this calculation includes temperature and working point
dependent parameters such as the inductances and the
magnetic flux. Also, the drive system underlies manufac-
turing tolerances in the series production. In addition, the
measurements of the mechanical angle, the phase currents
and of the DC-link voltage are influenced by measurement
errors. They directly affect the accuracy of the requested
torque.

In practice, it would be time and cost consuming to
calibrate each powertrain to both its varying parameters
and its measurement errors. Therefore, the control system
needs to be robust against parameter and measurement
fluctuations. To still increase the robustness and the torque
accuracy the question arises which parameter has which
amount of influence on the torque deviation.

However, it is not possible to quantify the influences of
parameter fluctuations in such a complex technical system
with established control theory methods. Therefore, this
paper presents a variance based sensitivity approach, in-
troduced by Sobol (1993), to quantify the relation between
the variance of the output of interest and its causes. This

method is already used in several technical applications,
for example Schwieger (2007), Menberg et al. (2016) and
Opalski (2015). These authors stated that it is a powerful
tool to analyze technical systems or models. In this paper
the variance based analysis identifies the most influencable
parameters in order to improve the torque accuracy of the
drive system.

The variance based sensitivity indices cannot be calculated
analytically. Instead of they are estimated based on pseudo
Monte Carlo simulations. This raises the problem of ensur-
ing convergence of the estimators which is to the best of
our knowledge neglected in the literature. Therefore, this
paper presents a novel approach to ensure convergence of
the estimated sensitivity indices.

The theory on sensitivity analysis and convergence is pre-
sented in Section 2. The sensitivity measures are computed
for a real drive system of a battery electric vehicle (BEV).
The used model is described in Section 3. The correspond-
ing sensitivity setup is explained in Section 4. The results
of the sensitivity analysis and also the convergence of
the estimators are presented and discussed in Section 5.
Section 6 summarizes the results and draws conclusions.

2. VARIANCE BASED SENSITIVITY ANALYSIS

Considering the relation between the output Y and
the input X can be described by the model Y =
f(X1, X2, . . . , XK) with K parameters. In the variance
based sensitivity analysis the variation of each input pa-
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rameter Xi is specified by their probability density func-
tions (PDF). The model can be decomposed using a high
dimensional model representation (HDMR), first intro-
duced by Sobol (1993), into

y = f(x) = f0 +
K∑
i=1

fi(xi) +
K∑
i=1

K∑
i<j

fij(xi, xj)

+ . . .+ f12...K(x1, x2, . . . , xK),

(1)

where f0 denotes a constant. The term
∑K

i=1 fi(xi) in-
cludes a set of K functions depending on a single pa-

rameter xi. The term
∑K

i=1

∑K
i<j fij(xi, xj) describes a

set of functions including interaction terms between two
parameters xi, xj . This scheme of decomposition can be
continued to f12...K(x1, x2, . . . , xK) which describes the
interaction between the complete parameter set K.

Assuming independence between the parameters the vari-
ance of Equation (1) is given by

V (Y ) =
K∑
i=1

Vi +

K∑
i=1

K∑
i<j

Vij + . . .+ V12...K . (2)

Normalizing Equation (2) by V (Y ) leads to

1 =
K∑
i=1

Si +

K∑
i=1

K∑
i<j

Sij + . . .+ S12...K , (3)

which represents a decomposition of the sources of vari-
ance. Si denotes the first order effect. It quantifies the in-
fluence of a single parameter on the output of interest. Sij

are called second order effects and indicate the interaction
between two parameters. This scheme can be continued up
to the effects of K-th order.

To describe all effects of one parameter the total effect

STi = Si +

K∑
j=1
j �=i

Sij + . . .+ S12...K (4)

sums up all effects including its interaction effects on the
output of interest.

The decomposition in Equation (3) leads to 2K−1 possible
sensitivity measures. Due to this large amount of indices
it is impractical to analyze all effects. Furthermore, the
first order and total order effects represent a satisfactory
approximation of the overall system behavior. Therefore,
in this paper only the first order and total effects are used.

As shown in Saltelli et al. (2010), the first order indices can
be calculated by the relation of the conditional expectation
value VXi

(EX∼i
(Y | Xi)) and the overall variance V (Y )

described by

Si =
VXi

(EX∼i
(Y | Xi))

V (Y )
. (5)

X∼i denotes the vector of all parameters except Xi. The
inner expectation operator outlines the averaging over all
possible values of X∼i while keeping Xi fixed. The outer
variance is taken over all Xi.

For calculating the total effect the Equation

STi =
EX∼i

(VXi
(Y | X∼i))

V (Y )
= 1− VX∼i

(EXi
(Y | X∼i))

V (Y )
(6)

holds. The question arises how to compute VXi(EX∼i(Y |
Xi)) for the first order effects in Equation (5) and

EX∼i
(VXi

(Y | X∼i)) for the total effects in Equation (6).
Using sample data it is not possible to calculate the sensi-
tivity indices analytically. Therefore, VXi

(EX∼i
(Y | Xi)),

EX∼i
(VXi

(Y | X∼i)) and V (Y ) are replaced by their cor-

responding estimates V̂Xi
(EX∼i

(Y | Xi)), ÊX∼i
(VXi

(Y |
X∼i)) and V̂ (Y ).

2.1 Estimation of first order and total order effects

For the sample data generation quasi-random sequences
are used. Sobol and Kucherenko (2005) showed that quasi-
random sequences converge faster than crude Monte Carlo
sampling (random sampling). This applies in particular for
sequences with low discrepancy values. Therefore, in this
paper, Sobol sequences (Sobol, 1967) are used as the most
common representative of quasi-random sequences.

The sample data are generated in the unit hypercube with
two independent sampling matrices using Sobol sequences.
The distribution of each parameter can be transformed
from the uniform distribution in the unit hypercube to
any other cumulative distribution function (CDF) using its
inverse. This results in the sampling matrices, as proposed
in Saltelli et al. (2010),

A =




a11 a12 · · · a1K

a21
. . .

...
...

. . .
...

aN1 · · · · · · aNK


 with ajg ∈ RN×K (7)

B =




b11 b12 · · · b1K

b21
. . .

...
...

. . .
...

bN1 · · · · · · bNK


 with bjg ∈ RN×K (8)

where the index g ∈ {1, 2, ...,K} denotes the parameter of
interest and the index j ∈ {1, 2, ..., N} denotes the number
of simulation.

For the estimators a third dataset

A
(i)
B =




a11 · · · b1i · · · a1K

a21 b2i
...

...
...

...
aN1 · · · bNi · · · aNK


 (9)

is obtained from matrix A where the i-th column is
replaced by the i-th column from matrix B. With the

sampling matrices A and A
(i)
B Si and STi

can be estimated
with different estimators. In this paper, three estimators
for the first order effects, introduced by Sobol (1993),
Jansen (1999) and Saltelli et al. (2010), are compared.
For the total effects two estimators, suggested by Jansen
(1999) and Sobol (2007), are analyzed. All estimators
under consideration are summarized in Table (1).

For the estimation of the denominators of Equations (5)
and (6) the sample variance

V̂ (Y ) =
1

N − 1

N∑
i=1

(Y − Y )2 (10)

is used.
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Table 1. First order and total order estimators

V̂Xi
(EX∼i

(Y | Xi)) Author

1
N

∑N

j=1
f(A)jf(B

(i)
A )j − f2

0 Sobol (1993)

V (Y )− 1
2N

∑N

j=1

(
f(B)j − f(A

(i)
B )j

)2
Jansen (1999)

1
N

∑N

j=1
f(B)j

(
f(A

(i)
B )j − f(A)j

)
Saltelli et al. (2010)

ÊX∼i
(VXi

(Y | X∼i))

1
2N

∑N

j=1

(
f(A)j − f(A

(i)
B )j

)2
Jansen (1999)

1
N

∑N

j=1
f(A)j

(
f(A)j − f(A

(i)
B )j

)
Sobol (2007)

The performance of these estimators, also for non normal
distributed input parameters, is outlined in Saltelli et al.
(2010) for different test cases.

2.2 Time and state dependence of physical systems

The major drawback of the HDMR, as defined in Equa-
tion (1), is that time and state dependencies are neglected.
Considering time and state dependencies the model can be
described by

y(t) = f(xp,x0, t,u(t)), (11)

where xp denotes the parameters of interest. The vector
x0 is the initial system state and t represents the point in
time of the physical system. Common physical system are
equipped with a control input u(t). The extension of the
system by x0, t and u(t) leads to state and time dependent
sensitivity indices expressed by

Si(x0, t,u(t)) (12)

STi
(x0, t,u(t)). (13)

In order to guarantee representative sensitivity results the
whole state space of the system has to be covered.

2.3 Convergence behavior

For reliable sensitivity estimates it is essential to ensure
convergence of the estimators. Also it needs to be ensured
that the available data, defined by the number of samples
N , is large enough for producing reliable estimates. In
the following, two approaches to verify convergence are
discussed.

The first method calculates an absolute scalar error mea-
sure over all estimates, whereas the second method approx-
imates the confidence intervals for each estimated value
Ŝi(x0, t,u(t)) and ŜTi

(x0, t,u(t)).

The former method is based on the fact that each estima-
tor in Table (1) ensures asymptotic unbiased results which
means that

lim
N→∞

Ŝi(x0, t,u(t)) = Si(x0, t,u(t)) (14)

lim
N→∞

ŜTi(x0, t,u(t)) = STi(x0, t,u(t)). (15)

In the first step the parameters x0, t and u(t) need to
be removed from Equations (11), (12) and (13). x0 and
u(t) have to be selected such that all working points of
interest are covered. This choice highly depends on the
analyzed physical system. The remaining time dependency

N1 N2 N3 N4 N5 N6 N7 N8Nm = N
0.34

0.36

0.38

0.4
Ŝi,l, ŜTi,l

with l ∈ {j − 5, j − 4, ..., j, j + 1, ...,m}

j

j
−

5

j
−

4

j
−

3

j
−

2

j
−

1

j
+

1

j
+

2

m

Ŝi,j , ŜTi,j

Ŝ
i,
Ŝ
T
i

Fig. 1. Exemplary estimation result for Ŝi, ŜTi
with differ-

ent sample sizes [N1, Nm] for parameter i

is removed by computing the mean over the time interval
[t1, t2] with

Ŝi =
1

t2 − t1

∫ t2

t1

Ŝi(t)dt (16)

ŜTi
=

1

t2 − t1

∫ t2

t1

ŜTi
(t)dt. (17)

Accordingly, (16) and (17) represent a scalar measure.

To verify the convergence of the estimators, so called error
measures need to be determined. Initially, the sensitivity

measures Ŝi and ŜTi
are estimated for different sample

sizes N1 < N2 < ... < Nm = N . Then the error measures
are obtained from

ε
Ŝi,j

= max
l

∣∣∣Ŝi,j − Ŝi,l

∣∣∣ (18)

ε
ŜTi,j

= max
l

∣∣∣ŜTi,j
− ŜTi,l

∣∣∣ (19)

with j ∈ {1, 2, ...,m} and l ∈ {j−5, j−4, ..., j, j+1, ...,m}.
For a better understanding of Equations (18) and (19)
Figure 1 underlines the relations between the sample sizes
and the different indices. Because of (14) and (15), it is
obvious that the measures in Equations (18) and (19) tend
to zero for increasing sample sizes.

To get a single measure of the complete estimation the
mean over all parameters

εŜj
=

1

K

K∑
i=1

εŜi,j
(20)

εŜTj
=

1

K

K∑
i=1

εŜTi,j
(21)

is computed with K as the number of parameters.

Finally, convergence of the estimators is ensured if
εŜj

, εŜTj
≤ εmax, where εmax is a certain error bound.

The second method, which calculates the confidence
interval for each estimated value Ŝi(x0, t,u(t)) and

ŜTi
(x0, t,u(t)), is based on bootstrap resampling intro-

duced by Efron (1979). In bootstrap resampling the simu-
lation results of sample size N are assumed to be the basic
population. From this basic population a random sample
of size Nb < N is drawn randomly. This resampling is re-
peated B times. For each bootstrap sample, the sensitivity
measures Ŝb

i and Ŝb
Ti

are calculated. The estimated mean
and standard deviation of these bootstrap samples
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RsId
Ld

ωelLqIqUd
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ωel(LdId +ΨPM )Uq

Fig. 3. PSM equivalent circuits

Ŝb
i =

1

B

B∑
b=1

Ŝb
i (22)

σ̂Sb
i
=

√√√√ 1

B − 1

B∑
b=1

(Ŝb
i − Ŝb

i )
2 (23)

leads to the information for defining the confidence inter-
vals. The estimated mean and standard deviation of the
total effect Ŝb

Ti
is analogously calculated to Equations (22)

and (23). Archer et al. (1997) proved that the estimated
mean and standard deviation using bootstrap resampling
is asymptotically normal distributed and consistent for-
malized by

lim
B→∞

Ŝb
i = E(Ŝb

i ) = Sb
i (24)

lim
B→∞

σ̂Sb
i
=

√
E((Ŝb

i )
2)− E(Ŝb

i )
2 = σSb

i
. (25)

The definitions in Equations (24) and (25) are also valid

when calculating the bootstrap samples for Ŝb
Ti
. The

properties (24) and (25) enable the derivation of reliable
confidence intervals, if the number of bootstrap samples B
is large enough.

3. SIMULATION SETUP

The physical system under consideration is a common
powertrain for an battery electric vehicle. Figure 2 il-
lustrates that the physical system consists of a battery,
an inverter and a permanent magnet synchronous drive
(PSM). In addition, the real implemented production code
software of the inverter is modeled. Because the focus of
this analysis lies on investigating the effects of changing
material parameters in the drive and measurement errors
in the inverter, the battery is modeled as a constant volt-
age source. Also dynamic effects of the wiring are neglected
in this simulation. The IGBTs of the inverter are modeled
as ideal switches without any losses.

The PSM is designed as a fundamental wave model in
d, q coordinates with saturation effects, as described in

Rs, Ld, Lq,ΨPM

Id, Iq

Ud, Uq

ωel
d

dt
ωm > ωth

Feedforward

Parameter
observer

Orientation
observer

ωm

IGBT

UDC + eUDC

Rs

Ld + eLd

Lq + eLq

ΨPM + eΨPM

eϕm

eIu eIv

−

−

u, v, w

Iv

Iu

IwIβ

d, q

d, q

α, β

α, β

α, β
Id

Iq

R
s
,L

d
,L

q
,Ψ

P
M

Id,set

Iq,set Uq,set

Ud,set

Uα,set

Uβ,set

Tset

Iα

SVM

Fig. 4. Implemented field oriented control with error injec-
tion points

Schröder (2013). According to the equivalent circuit, as
shown in Figure 3, the following voltage Equations results

Ud = RsId +
dLd(Id, Iq)Id

dt
− ωelLq(Id, Iq)Iq (26)

Uq = RsIq +
dLq(Id, Iq)Iq

dt
+ ωelLd(Id, Iq)Id

+ ωelΨPM (Id, Iq). (27)

The saturation effects are modeled by the dependence of
the direct inductance Ld, the quadrature inductance Lq

and the magnetic flux ΨPM on the currents Id and Iq.
The relationship between the controlled currents Id and
Iq and the air gap torque Tel is described by

Tel =
3

2
pIq

(
ΨPM (Id, Iq) + Id

(
Ld(Id, Iq)− Lq(Id, Iq)

))

(28)

with p as the number of pole pairs.

The software model is the production code of a state of
the art field-oriented control (FOC) of the hofer eds drive
unit. Figure 4 displays the principle scheme.

4. SENSITIVITY SETUP

In the following, the influences of production related
parameter variations on the PSM, caused by varying
plate and magnet material, are examined. The variation
of plate and magnet material results in a variation in
the machine parameters Ld, Lq and ΨPM . Because the
errors in the inductances and also the magnetic flux are
working point dependent, as outlined in Figure 5, they
are modeled as lookup tables. The maximum errors are
previously defined by FEM simulations of the investigated
machine. To model the working point dependence of Ld, Lq

and ΨPM auxiliary variables eLd
, eLq , eΨPM

∈ [−1, 1] are
introduced. By multiplying these auxiliary variables with
the working point dependent lookup values, the maximum
error in each working point is taken into account. In
addition, the variation in the winding resistance Rs is also
respected.

The measurement errors are considered for the current
sensors eIu , eIv , the DC-link voltage sensor eUDC

and the
mechanical angle sensor eϕm

.

Figure 4 depicts the injection points of these errors. All pa-
rameter variations are assumed to be normal distributed.
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Fig. 5. Working point dependent error of the machine
parameters Ld, Lq,ΨPM .

Table 2 summarizes their type of error and their variations.

Table 2. Parameter variations

Name Type of error Mean Variance 3σ

Rs absolute value 8.8mΩ 7.744× 10−6 mΩ2 0.264mΩ

eLd
percentage error 0 1

9
1

eLq percentage error 0 1
9

1

eΨPM
percentage error 0 1

9
1

eIu relative error 0 6.94× 10−5 0.025

eIv relative error 0 6.94× 10−5 0.025

eUDC
relative error 0 1.11× 10−5 0.01

eϕm absolute error 0 rad 2.11× 10−6 rad2 0.0044 rad

5. RESULTS

With the previously presented model and the sensitivity
setup the Sobol sensitivity indices are calculated. Section
5.1 outlines the achieved convergence behavior of the
analyzed system and section 5.2 discusses the simulation
results.

5.1 Convergence behavior

In the following, the simulations results are examined with
respect to the convergence behavior of the estimators.
Figure 6 outlines the measures described in Equations (20)
and (21). The estimators behave significantly different in
their convergence behavior. The estimators from Jansen
converges faster than the estimators from Sobol and
Saltelli. For a maximum sample size of N = 3000 sam-
ples only the Jansen estimators reach the predefined error
bound εmax = 0.01.

The same convergence behavior can be observed in Figure
7, which presents the confidence intervals for Ŝi and ŜTi

for
a specific time interval using Bootstrap resampling. Com-
paring the Jansen estimators with the Sobol estimators,
it becomes obvious that the 95% confidence error bounds
are smaller for the Jansen than the Sobol estimators. For
the Sobol estimators the confidence intervals are overlap-
ping such that a clear differentiation of the effects is not
possible.

Based on these convergence results, as outlined in Figure
6 and 7, in the following analyses only the results of the
Jansen estimators are further considered.
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Fig. 6. Convergence errors εŜj
and εŜTj

for all estimators

and a defined maximum error bound εmax.

Fig. 7. 95% confidence intervals of Jansen (1999) and Sobol

(1993),Sobol (2007) estimators for Ŝi and ŜTi at the
time interval [0.5 s, 0.508 s]
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Fig. 8. 3σ bounds for the simulated operating points

5.2 Sensitivity analysis of the torque accuracy

In the first step the maximum absolute deviation is ana-
lyzed. The 3σ bound of the variance is defined as measure
of the variation in the output torque and is depicted in
Figure 8. In general, the maximum deviation of the torque
is less than 10Nm except for one single working point. The
absolute fluctuation should always be taken into account
to identify the working points with the highest deviation.

In order to quantify the influence of each parameter at
each operating point the computed sensitivity indices for
19 working points are used. They are outlined in Figure 9
for the first order effects and in Figure 10 for the total
effects. Comparing the first order and the total order
effects in the continuous torque area, it can be seen that

the parameter dependencies behave linear since
∑K

i=1 Ŝi ≈
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Fig. 10. Total order effects for different operating points
∑K

i=1 ŜTi
holds. This means that the effect ŜTi

on the
output variance depends only on one parameter and has
no interaction with other parameters. On the other hand
in the field weakening area and at the power boundary
the system behaves nonlinear or with interactions with

other parameters because of
∑K

i=1 Ŝi �= ∑K
i=1 ŜTi

or∑K
i=1 ŜTi

� 1.

The first order indices show that for almost each working
point the variation in the magnetic flux eΨPM

has a
significant influence on the torque accuracy. Also the
current errors eIu and eIv are responsible for a large share
of variance of the torque but mainly in the continuous
torque area. In the field weakening area a lot of nonlinear

effects exist, because of
∑K

i=1 Ŝi � 1. Nevertheless, Figure
10 outlines that in the field weakening area each parameter
has nearly the same influence on the variance of the torque.
Therefore, in this case no dominant parameter such as in
the continuous torque area can be figured out.

Based on these results, it is outlined that the torque
accuracy can be systematically improved for the continu-
ous torque area by focusing on the significant parameters
eΨPM

,eIu and eIv . Unfortunately, in the examined system
no significant parameter for the field weakling area can be
established. Nevertheless, with this knowledge developers
are able to focus on the relevant parts of the system for
improvements and to save time and money.

6. CONCLUSION

This paper outlines the benefits of a variance based sen-
sitivity analyses on a real physical system. A complete
BEV powertrain was modeled and used as the basis for
the sensitivity analysis. To deal with the problem of en-
suring convergence two novel approaches were discussed.
Moreover, the link between the variance based sensitivity

measures and the application on physical models, includ-
ing time and state dependence, was derived. Finally, the
convergence error and the sensitivity indices were com-
puted and discussed for the presented system.

The results indicate that the variance based sensitivity
analysis is a powerful method to connect the effects on the
output with their causes. This makes it possible to quan-
tify the influence of dominant parameters on the torque
accuracy in electrical drives. As a result, the developer is
able to identify the most influencing parameters to reduce
the torque deviation with minimal effort in cost and time.
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