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A B S T R A C T

In the past decade, research on measuring and assessing the environmental impact of software has gained
significant momentum in science and industry. However, due to the large number of research groups,
measurement setups, procedure models, tools, and general novelty of the research area, a comprehensive
research framework has yet to be created. The literature documents several approaches from researchers and
practitioners who have developed individual methods and models, along with more general ideas like the
integration of software sustainability in the context of the UN Sustainable Development Goals, or science
communication approaches to make the resource cost of software transparent to society. However, a reference
measurement model for the energy and resource consumption of software is still missing. In this article, we
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jointly develop the Green Software Measurement Model (GSMM), in which we bring together the core ideas of
the measurement models, setups, and methods of over 10 research groups in four countries who have done
pioneering work in assessing the environmental impact of software. We briefly describe the different methods
and models used by these research groups, derive the components of the GSMM from them, and then we discuss
and evaluate the resulting reference model. By categorizing the existing measurement models and procedures
and by providing guidelines for assimilating and tailoring existing methods, we expect this work to aid new
researchers and practitioners who want to conduct measurements for their individual use cases.
1. Introduction

The expansion of the Information and Communications Technology
(ICT) sector in recent years has led to remarkable growth in its envi-
ronmental impact. Recent reports conclude that approximately 2–3 %,
or 1.0–1.7 GtCO2e,1 of the total global greenhouse gas emissions stem
from the ICT industry’s energy use [1]. Moreover, estimates indicate
that global ICT energy use could exceed 20 % of total energy and emit
up to 5.5% of the world’s carbon emissions by 2025. This would have
a large negative impact on the environment [2,3]. This is even more
relevant with the increased development and usage of new technolo-
gies like artificial intelligence and especially machine learning based
systems or distributed ledgers, which consume significant amounts of
computational resources and energy [4,5].

While hardware consumes energy and resources, it is software that
triggers its usage and thus can influence the consumption. The un-
questionable influence of software on energy consumption is fostering
research in the field of ‘‘green software’’ [6–9]. Several works discuss
definitions of software sustainability and how to address it by better
understanding and measuring how software drives energy and resource
consumption [10–14]. However, software products become complex
very fast and, as stated by Pang et al. [15], programmers do not have
much experience with software-induced energy consumption. Lago
et al. [16] conducted a survey about the experience and beliefs of
IT practitioners and researchers on current and desired practices in
architecting for sustainability. They conclude that the main obstacles
preventing the inclusion of sustainability issues in software devel-
opment projects are business motivation, short-term thinking, a lack
of agreement on why sustainability is important, and an absence of
knowledge on what concrete measures can be taken. Developers used
to have to rely on Q&A websites, blog posts, or videos when trying to
optimize for energy consumption, but these resources are not supported
by empirical evidence and may even be incorrect [17,18].

Fortunately, research and developer communities have produced
and tested guidelines, tools, and criteria to aid developers. For exam-
ple, Pereira et al. [19] analyzed 27 software languages with the aim of
helping software engineers decide which language to use from an en-
ergy efficiency perspective. Chowdhury et al. [20,21] proposed a model
which is based on dynamic traces of system calls and CPU utilization in
order to estimate the energy consumption of software. Moreover, the
influence of software architecture on energy consumption has been ad-
dressed by Guamán and Pérez [22] and Cabot et al. [23]. Additionally,
as stated by Manotas et al. [18], energy concerns have been largely ig-
nored during, e. g., the maintenance phase. Cruz et al. [24] investigated
whether improving energy efficiency by applying energy efficiency
standards has a negative impact on maintainability, and Calero et al.
[25] used a hardware measurement device to analyze the relationship
between maintainability and software energy efficiency. Estimations of
the energy consumption of software of mobile applications have also
been the object of study [26,27].

What is missing is a comprehensive measurement reference model
that aids stakeholders in the life cycle of a software product in order
to gauge the growing supply of available measurement methods and
models. This should then enable them to develop, plan, conduct, and
analyze measurements for their software, using a selected method or

1 1 GtCO e = 109 tonnes of carbon dioxide equivalent
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creating their own. To do so, in this article, we present a reference
model by structuring existing research to provide recommendations,
processes, and tools for practitioners to assess, and thus minimize,
the environmental impact of software. Section 2 presents the need
for a measurement reference model, while Sections 3 and 4 outline
the contemporary understanding, approach, and available methods for
measurements in the context of Green Software Engineering and Green
Coding. In Section 5, we present and describe the measurement refer-
ence model. Section 6 discusses the model by exemplarily mapping the
existing methods from Section 4. Finally, we summarize our findings
and provide an outlook with the overarching goal of the continuous
improvement of the measurement reference model in Section 7.

2. Problem statement

With the rising resource and energy consumption induced by soft-
ware, it is necessary for stakeholders in the software life cycle to be
able to measure and continuously monitor this consumption in order
to minimize software-induced environmental impacts and to enhance
resource efficiency. Consequently, it is necessary to develop applicable
and valid measurement methods that are actually usable in developer
and user communities. Therefore, the aim of our proposed Green
Software Measurement Model (GSMM) is to provide a framework that
contains essential elements for measuring software and to present exist-
ing measurement methods. In this way, measuring and improving the
resource and energy efficiency of software can become part of the daily
work of the involved stakeholders, such as developers, administrators,
and users.

Currently, there is no consensus on measurement setups, methods,
or techniques for data analysis. With each researcher applying their
own methods, often with little to no documentation or publicly avail-
able data (e. g., in the form of replication packages), it is difficult and
sometimes outright impossible to check or compare results obtained
across studies, to replicate analyses, or to re-use data. To solve this
problem, we propose establishing a reference model for measurement
and analysis methods to assess the resource and energy efficiency of
software.

In this paper, we collect 8 methods from international groups deal-
ing with energy and resource measurements and analyses of software.
We assess them and other procedure models to compare, generalize,
extract, and categorize a comprehensive GSMM. This model should
allow the categorization of existing measurement methods and the
derivation of adapted methods for individual measurement use cases,
such as for software types, hardware and software setups, and also
individual components of software systems, e. g., along the software
stack.

In order to structure the terminology used in the area of mea-
surements of the resource and energy efficiency of software, and with
regard to the missing standardization in the field of Green Software
Engineering, we created a glossary,2 based, i. a., upon the ontology
created in Mancebo et al. [28]. The main goals are to provide a
terminological overview and a means for disambiguation, as well as
point out the synonymous usage of terms in the literature.

2 https://gitlab.rlp.net/green-software-engineering/gsmm/-/blob/main/
nglish/glossary.md

https://gitlab.rlp.net/green-software-engineering/gsmm/-/blob/main/english/glossary.md
https://gitlab.rlp.net/green-software-engineering/gsmm/-/blob/main/english/glossary.md
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3. Related work

Sustainable Software Engineering is still lacking a unified termi-
nology. In general, it aligns software engineering with the so-called
dimensions of sustainability (e. g., social, economic, and environmen-
tal) according to Calero et al. [29] and Purvis et al. [30]. The envi-
ronmental dimension is often referred to as Green Software Engineering
(GSE). However, GSE encounters hurdles in the standardization of its
terminology as well. This results in terms such as Green Coding and
ustainable Software Engineering (SSE) being used interchangeably, an
ssue previously addressed by Calero and Piattini [31].

Naumann et al. [10] introduced the GREENSOFT Model, a reference
odel that structures and classifies elements of GSE and identifies mea-

urements as a central necessity. A number of approaches and tools for
easuring the energy consumption of software have been published.
ne of the earliest was described in 2011 by Wang et al. [32], who

ntroduced SPAN, a system for analyzing the energy consumption of
PUs using performance monitoring counters and their correlation with
easured energy consumption. Building on SPAN, they also introduced

AFARI for assessing energy consumption at the function level [33].
lso proposed in 2011, SEEP utilizes symbolic execution and platform-
pecific energy profiles to give estimates of the energy consumption of
ode during development [34]. Hindle et al. [35] describe GreenMiner,
test setup for mobile devices which ran automated tests of mobile

pps on the measured phone using a standard usage scenario-based
pproach.

Newer, integrated frameworks include Scaphandre, EnergAt, Code-
Carbon, and the Experiment-Impact-Tracker. Scaphandre is a measure-
ment and visualization tool built on the Intel RAPL interface.3 It
supports the measurement of CPU power consumption for server or
container-based solutions [36]. EnergAt is a model for obtaining
application-specific energy measurements in a setting where multiple
applications are collocated on the same device [37]. CodeCarbon [38]
and the Experiment-Impact-Tracker [39] also use RAPL as well as
nvidia-smi4 to gather information about energy consumption, with a
focus on machine-learning applications (see also Guldner et al. [40] for
a comparison of these two trackers with the SERENA method, described
in Sections 4 and 6). Ournani [41] and Schade [42] also provide an
overview of software energy measurement tools, both software-based
and hardware-based, and Jay et al. [36] compare a set of software-
based measurement tools and investigate how measurements obtained
through them correlate to those taken with an external power meter.

The relevance of software for ICT-related energy consumption has
also been acknowledged in energy efficiency and sustainability label
specifications such as the American EnergyStar or German Blue Angel
labels. The EnergyStar specifies a number of requirements for energy
measurements, including ambient temperature, humidity, and char-
acteristics of the power meter used [43,44]. Testing has to occur in
accordance with relevant standards (e. g., EN 62623:2013) and in-
cludes power consumption in various states, as defined by measurement
standards, as well as a maximum power test using the Linpack and
SPECviewperf benchmarks. The Blue Angel is a German sustainability
label owned by the Federal Ministry for the Environment. It offers
a number of ICT-related specifications and since 2020 a dedicated
specification for software centered around a number of quality criteria
and prescribing the measurement and reporting of software-induced
energy consumption [45].5

3 https://web.archive.org/web/20230623133912/https://01.org/blogs/
014/running-average-power-limit-%E2%80%93-rapl [2023-11-06]

4 https://developer.nvidia.com/nvidia-system-management-interface
2023-11-06]

5 https://www.blauer-engel.de/en/productworld/resources-and-energy-
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fficient-software-products [2023-11-06]
4. Modeling approach and referenced measurement methods

It is apparent from the literature that measurements of software-
induced energy and resource consumption are necessary to assess and
reduce the environmental impact of software. Thus, we introduce the
GSMM to allow for the implementation of measurements in a structured
and standardized way and to define minimum requirements for mea-
surement methods, as well as guidelines for all associated processes,
experiment setups, and expected outcomes. We base its development
on existing reference models, such as the GREENSOFT model, as well
as on measurement methods from related work, from the authors’ own
research, and from practitioner groups. They form a basis of the GSMM
and range from easy-to-apply methods designed to help developers or
users quickly capture metrics with onboard means, to sophisticated and
integrated measurement setups for scientific experiments.

It should be noted that we see model creation and method devel-
opment as iterative processes. Since this process is described linearly
in the article, we first briefly introduce the existing methods and then
present the GSMM in Section 5. We then describe the existing models
in detail and show how they can be mapped to the GSMM in Section 6.
This, in turn allows for the continued development of the GSMM,
creating a structural coupling between the GSMM and available as well
as novel methods. Therefore, we highly encourage other researchers
and practitioners within the (Green) Software Engineering community
to use, discuss, and contribute to the model.6

• Software Energy and Resource EfficieNcy Analysis (SERENA) (see
Section 6.1)7 is a measurement method developed at Umwelt-
Campus Birkenfeld based on the work of Kern et al. [46]. It
enables the resource and energy efficiency assessment of software
by measuring the consumption of the entire physical system,
using a power meter and resource-monitoring tools running on
the system. It also includes the OSCAR script for analyzing the
measurements.8

• The Green Software Measurement Process (GSMP) [47] (see Sec-
tion 6.2) details all activities and roles necessary to perform
measurements and analyses of the energy consumption of soft-
ware. GSMP is the methodological component of the Framework
for Energy Efficiency Testing to Improve Environmental Goal of the
Software (FEETINGS) [28], which also has a conceptual and a
technological component, a hardware device built to capture
the energy consumption of the computer and several hardware
components, and ELLIOT, a tool to analyze the captured data.

• The Sustainability Assessment Framework (SAF) Toolkit [48] and
the Green Lab (see Section 6.3) are both developed by the Soft-
ware and Sustainability (S2) group at VU Amsterdam. The SAF
Toolkit provides various tools to define, guide, uncover, and
eventually operationalize sustainability-quality concerns in the
form of a concrete measurement plan and report. The Green Lab
is the experimental platform for conducting empirical studies on
the quality of software, with a special emphasis on its energy effi-
ciency. The Green Lab is supported by several open source tools,
which help researchers in following established guidelines for the
design and running of measurement-based experiments [49,50].

• The Green Metrics Tool (see Section 6.4)9 is a versatile industry
energy measurement tool from Green Coding Berlin. It isolates
applications in containers for precise measurement of power,
network, disk, and memory consumption, and supports various
metrics. The tool is architecture-agnostic, it can be used for GUI
applications, and it separates benchmark runs into distinct life

6 Available at https://gitlab.rlp.net/green-software-engineering/gsmm/-
tree/main/english

7 https://gitlab.rlp.net/green-software-engineering/serena
8 https://gitlab.rlp.net/green-software-engineering/oscar
9
 https://github.com/green-coding-berlin/green-metrics-tool

https://web.archive.org/web/20230623133912/https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
https://web.archive.org/web/20230623133912/https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
https://developer.nvidia.com/nvidia-system-management-interface
https://www.blauer-engel.de/en/productworld/resources-and-energy-efficient-software-products
https://www.blauer-engel.de/en/productworld/resources-and-energy-efficient-software-products
https://gitlab.rlp.net/green-software-engineering/gsmm/-/tree/main/english
https://gitlab.rlp.net/green-software-engineering/gsmm/-/tree/main/english
https://gitlab.rlp.net/green-software-engineering/serena
https://gitlab.rlp.net/green-software-engineering/oscar
https://github.com/green-coding-berlin/green-metrics-tool
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cycle steps. It offers a detailed dashboard and an API for data
analysis, focusing on machine-dependent factors to understand
energy consumption impacts.

• The Cloud Energy Usage Estimation Model (see Section 6.5) devel-
oped by Green Coding Berlin is a machine learning model that
estimates energy usage in environments where controlled mea-
surements are not feasible. Based on research by Rteil et al. [51],
it uses the SPECPower dataset to create an XGBoost model for es-
timating the AC power draw of servers. The model is particularly
useful in settings (e. g., cloud) where detailed CPU information is
not available.

• Software Footprint (see Section 6.6)10 was developed by the Oeko-
Institut in conjunction with the eco-label Blue Angel for software
as a means of checking the energy consumption of software
without great technical effort. The low-threshold tool provides
software developers with information on their local development
computer about how much energy the execution of the software
consumes.

• The Emission Estimation Framework from the Sustainable Digital
Infrastructure Alliance (SDIA) (see Section 6.7) is a mathematical
model to estimate software energy consumption focusing on CPU
usage measurements [52]. The model is grounded in several
essential assumptions including the reliability of the Thermal
Design Power (TDP) as a proxy for CPU energy consumption and
fixed energy allocation between the CPU and other hardware
components. This makes the framework applicable to all software
types and systems as a pragmatic estimation method.

• The Container Overhead Measurement Methodology (see Section 6.8)
introduced in Kreten [53] enables pinpointing efficiency deficien-
cies within container configurations and environments, emphasiz-
ing a low-cost, practical approach. It is well-suited for assessing
resource and power consumption of containerized software using
standard server rack Power Distribution Units (PDUs). Further-
more, it includes a tool for assessing efficient horizontal container
scaling.

The application areas of the GSMM are the categorization of existing
odels and methods that aim at assessing the energy and resource

onsumption of software and the creation of new models. Thus, as a
irst step in the creation of the GSMM, we identified the elements and
cope of the introduced methods:

• What can be measured and what are the requirements?
• What is the purpose of the model (e. g., which stakeholders use

the measurement results for which goal and at which point in the
software life cycle)?

• What measures can be assessed, and how are the metrics calcu-
lated and evaluated?

• What are the models components, i. e., which phases does the
model establish for someone who wants to measure software in
accordance with it?

. Green software measurement model

To derive the framework model, we categorized the measurement
ethods (bottom-up approach) to describe a generic measurement
odel that is widely applicable. Furthermore, we considered quality

riteria and guidelines, as well as requirements, limits, and constraints
or measurement methods, and created a list of metadata to describe the
easurements from our experiences executing the measurements (top-
own approach). Fig. 1 shows an overview of the main components of
he GSMM, acting as the reference model framework.

In the center of the considerations for a measurement is the mea-
ured object, i. e., the software product(s) or part(s) thereof to be

10 https://blog.oeko.de/energieverbrauch-von-software-eine-anleitung-
um-selbermessen/
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Fig. 1. Components of the GSMM.

assessed, and the necessary parameters for their execution, as well as
the measurement goals that should be achieved; see (A). Then, the
desired metrics can be determined, which define the required mea-
urements to be conducted; see (B). The measurements, in turn, impose
rerequisites for the measurement procedure (C), as well as the
measurement setup (D), which define the measurement method, the
System under Test (SuT), the necessary tools, the measurement hard-
ware, etc. When these prerequisites are met, the measurement(s) can
be executed and the data gathered evaluated (E). The resulting output
of a measurement according to the GSMM are the measurement data,
e. g., power and hardware measurements from the executed scenarios,
the metadata describing the measured object, measurement procedure,
setup, produced data, etc., and the analysis report produced with a
data evaluation model, e. g., to optimize the software product. In the
following, we provide details about the individual components of the
GSMM and the generated data, and illustrate exemplary categories for
measurements.

5.1. Measured object and measurement goals (A)

Looking at the available measurement and assessment methods
referenced in Section 4, they all have in common that as a first
step they require a defined measurement goal as well as a software
product, or parts thereof, to be measured. This is sometimes called
the software entity. Common measurement goals include the compar-
ison of the software entity with itself over the development process,
e. g., within a CI/CD pipeline, between releases, or when introducing
new features. Furthermore, comparisons between different implemen-
tations, libraries, configurations, etc., and between different products
performing similar tasks (e. g., within software product groups like
browsers, media players, databases) are possible—and it is even fea-
sible to compare individual functionalities or software features across
product groups (e. g., there are many software products which provide
a feature to ‘‘edit text’’). When defining the features to be measured,
one approach found in the methods is to consider which functions,
libraries, or API calls would typically be used, and which could in-
duce a high resource load or energy consumption. Examples include
computational or network-intensive functions, functionalities that take
a relatively long time to be executed, functions that execute known
complex implementations. Furthermore, the methods differentiate be-
tween measurements that are carried out over a long period of time
(‘‘long-term’’), those that are repeated in certain intervals (e. g., with
each major release), or those conducted only once (e. g., to determine
which implementation is more efficient). The measurement goals and
specified parameters should be recorded as measurement metadata.

https://blog.oeko.de/energieverbrauch-von-software-eine-anleitung-zum-selbermessen/
https://blog.oeko.de/energieverbrauch-von-software-eine-anleitung-zum-selbermessen/
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Table 1
Overview of examples of relevant metrics.

Measure/Metric Exemplary unit Prerequisites and required
measures

Description

Run time and space
complexity

None Knowledge of the algorithm Big-O notation is a good indicator when comparing algorithms, not
easily applicable to larger software products

Duration 𝑠 Recording timestamps, usage
scenario

Relatively easy to measure, good introductory metric, already
widely used

Mean power draw 𝑊 Duration, power meter or
internal power logger,a usage
scenario

Useful to estimate influences of code changes, energy calculation
(see below) necessary for comparison purposes

Energyb 𝑊ℎ or 𝐽 Power, duration, baseline,
usage scenario

Robust indicator when comparing software products, algorithms,
etc., ideally integrated in development phase, potentially too
complex to assess

CPU usageb % Resource logger,c usage
scenario, baseline

Important indicator since CPU is one of the largest local energy
consumers, easy to measure, expandable to recording individual
CPU cores to evaluate parallelization

RAM usageb 𝑀𝐵 or % Resource logger, usage
scenario, baseline

Important considering hardware obsolescence, easy to measure,
usually less significant for energy usage

Permanent storageb 𝑀𝐵 Resource logger, usage
scenario, baseline

Important considering hardware obsolescence, easy to measure,
usually less significant for energy usage

Network traffic 𝑀𝐵 Resource logger, usage
scenario, baseline

Important indicator since transport and remote data processing
might have large resource and energy impacts, easy to measure,
potentially usable to estimate remote energy usage

GPU usageb % Resource logger, usage
scenario, baseline

Important indicator since GPU is one of the largest local energy
consumers, easy to measure if hardware provides data, only
necessary if software uses GPU

GRAM usageb % Resource logger, usage
scenario, baseline

Important considering hardware obsolescence, easy to measure
when hardware provides data, only necessary if software uses GPU

Mean GPU power draw 𝑊 Supported hardware w.
internal power logger, usage
scenario

Some GPUs provide internal power measurements, necessary for
GPU energy calculation (see below)

GPU energyb 𝑊ℎ or 𝐽 Mean GPU power draw, usage
scenario, baseline

Analogous to overall energy consumption, robust indicator when
GPU is used by software, easy to measure when hardware supports
power measurements

Useful work varied usage scenario Necessary when calculating energy efficiency (see below),
performance metrics (regression error, test accuracy, F1-score, IoU,
etc.) can indicate useful work done of ML models

Energy efficiency factor item
𝐽

Useful work and energy Especially useful for comparisons, needs additional computation and
possibly the recording of additional metrics

a External power meters or PDUs, e. g., from Janitza https://www.janitza.com/energy-and-power-quality-measurement-products.html [2023-11-06], GUDE https://gude-systems.
com/en/cat/power-distribution-units/ [2023-11-06], internal power loggers like RAPL and nvidia-smi.
b Software-induced metrics calculated by subtracting the according baseline measurements from the scenario measurements.
c Resource loggers include collectl (https://collectl.sourceforge.net/ [2023-11-06]), Windows performance monitor (https://techcommunity.microsoft.com/t5/ask-the-performance-
team/windows-performance-monitor-overview/ba-p/375481 [2023-11-06]), wireshark (https://www.wireshark.org/ [2023-11-06]), and nvidia-smi.
5.2. Measurements and metrics (B)

As a next step, the referenced methods usually derive the required
measurements from the defined goals and measured object directly. The
available metrics are dependent on several factors and prerequisites,
such as the used hardware and software, but the measurement goals
also have an influence on the selection of the appropriate metrics.
While developers may want, e. g., detailed information on changes to
the efficiency, RAM usage, and parallelization of a code block they just
altered, execution duration and network traffic metrics may suffice for
a user who wants to work with an app on their end device. In the
following, we list the most widely measured metrics from the methods
in Table 1 and discuss their usefulness and measurement complexity.

Besides the listed measures and metrics, methods like SERENA
(Section 6.1) and GMT (Section 6.4) also include further criteria, such
as CPU and GPU temperatures (which show a correlation to the power
draw [40] and may be an easy-to-measure indicator for optimization
success if the hardware provides the data), fan-speeds, clock speeds,
and environment data (ambient temperature, humidity, etc.). Addi-
tionally, it may be useful to gather and analyze the data on a more
detailed level, e. g., measuring individual CPU core usage to determine
parallelization effectiveness or logging CPU usage and network traffic
on a container-level for server software in data centers.
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The available metrics also impact the prerequisites for the mea-
surement procedure models and measurement setup. Developers can
use common run time and space requirements (big O notation) as
asymptotic requirements of an algorithm without any scenarios or
logging. With them, developers can quickly decide to use one over
the other to reduce the complexity of their software product and thus
the environmental impact when designing software products. However,
this also depends on the context, since ‘‘race to idle’’ does not always
imply a lower energy consumption of the whole system as shown,
e. g., by Pereira et al. [19] and Oliveira et al. [54]. All further metrics
require at least a usage scenario and some kind of resource logger.

Regarding energy efficiency metrics, it is necessary to define ‘‘useful
work’’, as described, e. g., in Johann et al. [55]. This, of course, depends
strongly on the software product and is not always feasible to define.
Examples from the methods are the number of created, read, changed,
deleted, or transmitted data points, the number of executed operations,
or benchmarks. The benefit of these metrics is that they make different
implementations directly comparable. If the items cannot be easily
defined, e. g., when measuring a complete software product like a word
processor, a possibility to compare the efficiency of one software over
the other is to make their outcomes as equal as possible (e. g., create the
same PDF document with the word processors) and then perform, for

https://www.janitza.com/energy-and-power-quality-measurement-products.html
https://gude-systems.com/en/cat/power-distribution-units/
https://gude-systems.com/en/cat/power-distribution-units/
https://collectl.sourceforge.net/
https://techcommunity.microsoft.com/t5/ask-the-performance-team/windows-performance-monitor-overview/ba-p/375481
https://techcommunity.microsoft.com/t5/ask-the-performance-team/windows-performance-monitor-overview/ba-p/375481
https://www.wireshark.org/
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Fig. 2. Actions in usage scenario.
instance, a t-test as described in Kern et al. [46] to test if the means
of the samples are different and thus determine the more efficient
software.

5.3. Measurement procedure models (C)

The determined goals, measurements, and metrics establish the pre-
requisites that the measurement procedure and the resulting setup need
to satisfy. Typical steps from the methods that need to be addressed in
component C are the definition of the measurement method, including
repetitions, which tools (e. g., workload generator) to use or build, and
which scenarios to devise (baseline without starting the software, idle
mode of the inspected software, usage, load, long-term, etc.). When
creating the scenarios from the specified measured object, there are also
several aspects to take into account, including the kind (idle, load, etc.)
and duration of the scenario, pre- and post-scenario operations like the
handling of log files, and which actions to perform in which order. The
scenario can then be constructed as in Fig. 2 or along already existing
tests, such as unit, integration, UI, end-to-end tests, etc.

Many use cases from the referenced methods stipulate a scenario
that is somehow automated and executed repeatedly to ensure reliable
results. In statistics, a minimum sample size of 30 is recommended
to ensure that the sampling distribution is close to the distribution of
the population (as described in Kern et al. [46]). Of course, in some
cases, such as exceptionally long scenarios of a system in production,
or if a developer just wants to check a new implementation, it may be
advisable to reduce the number of repetitions to bring the measurement
time to a reasonable level. In these cases, however, one should check
the graphs for outliers and calculate, e. g., the per-second standard
deviation in the measurement. The workload can be generated via soft-
ware tools, like automation software or scripts, on the SuT, or directly
from using the software, e. g., in continuous long-term measurements.
If automation tools are used, baseline and idle measurements should
be acquired with these tools active to later subtract their consumption
from the results.

Similar to software testing, usage scenarios can be categorized
according to the scenario technique into (i) black-box measurements,
where within the scenario some functionalities of the software product
are executed without regarding the implementation, function calls,
used libraries, etc.; and (ii) white-box measurements, where the impact
of individual parts of the implementation can be assessed and possibly
optimized. While white-box measurements usually require more effort
to be put into the measurement procedure (e. g., setting up automated
logging of individual actions, like library calls in Guldner et al. [40],
or even code blocks as described in Verdecchia et al. [56]), they can
also provide developers with in-depth insight into the consumption hot
spots of their software. Black-box measurements on the other hand only
require logging start and end-timestamps of the measurement and they
are useful, for instance, when assessing a complete software product or
tracking them over longer time periods such as over update cycles.
407
Another way of classifying scenarios is by their kind. Here, we
differentiate between idle, standard usage, and load scenarios, as well
as baselines. These scenario kinds are detailed in Kern et al. [46].
Idle scenarios can point to consumption hotspots when the software is
simply being executed without (user) interactions, e. g., through repet-
itive background tasks, such as update services, indexing, etc. Standard
usage scenarios are usually the most relevant. Here, the software is
executed as if it was used as intended. If the scenario includes times-
tamps for individual actions (like GUI interactions, function calls, etc.),
it can help to identify consumption hotspots in functionalities, startup
and shutdown processes, etc. Load scenarios for distributed systems
are useful for stress-testing the architectures with many (simulated)
users, but can also consist of benchmarks, e. g., for databases, API calls,
etc. Further usage scenarios can be defined along the life cycle of the
software product and tailored to each software type. Examples from
the referenced methods are installation and de-installation, the boot
process, e. g., for operating systems, the training or inference phase
of ML models, etc. The baseline is a special kind of scenario, and it
is required by some methods. Here, only the necessary components
to run the software product are active (device hardware and software
stack), but the software product itself is not executed. Baselines can
help when calculating software-induced consumption by subtracting
the baseline measurements from, e. g., the usage scenario, resulting in
only the overhead consumption induced by executing the scenario.

5.4. Measurement setup (D)

Using the specifications from the measurement method, metrics,
and measured object, the measurement setup identifies the necessary
hardware and software stack for the measurement in order to tailor
them to the use case. This includes the hardware and software for
the measurements themselves (SuT), the metering devices (if any, in
case of software-based logging), required tools for logging, etc. The
parameters that should be noted in the metadata here include the
necessary hardware setup as well as methods used for data acquisition,
tools, meters, etc. Furthermore, especially with power meters and mea-
surement devices, their accuracy, sampling rate, settings, etc. should be
noted to track possible errors in the evaluation.

Similar to the automation tools, there is a plethora of power and
hardware usage loggers available, depending on the measurement
method, operating system, and hardware setup. The data acquisition
can be done using software-based logging (e. g., using a resource logger
as in the Software Footprint Tool, the COMM method in Section 6,
a tracker like CodeCarbon [38], or manually logging them in a bash
script) and hardware-based logging (usually via an external power
meter, e. g., in the SERENA, GSMP, Green Lab, and GMT methods
in Section 6). In some cases, such as experiments involving several
different measured objects on one SuT, it is also advisable to consider
the creation of system images before and after installing the software
to ensure a ‘‘clean’’ system environment.11

11 E. g., with a tool like clonezilla https://clonezilla.org/ [2023-12-01]

https://clonezilla.org/
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When using hardware for an SuT that is not a desktop PC, there
are additional challenges, e. g., how to generate repeatable workloads
on a mobile device like a smartphone or an embedded sensor node,
or how to assess the resource consumption of a cloud-based compute-
node where the developer usually does not have direct access to the
hardware.

5.5. Data evaluation models (E)

Once the data is recorded, the data evaluation model defines the
methods used to analyze and evaluate the measurement data and
prepare the measurement report. In the referenced methods, this usu-
ally includes calculating and visualizing the metrics for all conducted
measurements. Depending on the measurement goals and scenarios,
it may be useful to calculate summary statistics such as mean values
for the hardware usage and standard deviations for the scenario rep-
etitions, or inferential statistics such as t-tests to compare the mean
values of measurements, along with visualizations for the data such as
tables, boxplots, or bar plots. Energy efficiency metrics and the energy
consumption of the scenarios or actions should be calculated as the
integral of the power draw over time, e. g., as detailed in Guldner et al.
[57]. With baseline measurements, the software-induced consumption
and hardware usage can be calculated.

The results should be logged in a meaningful way. For example, the
energy consumption can be given in Joules for short measurements or
when calculating the energy efficiency factor (e. g., transferred items
per Joule), or in kWh for long and resource-intensive measurements
like training ML-models. While simple evaluations can be performed
using a spreadsheet software, tools exist to automate the evaluation
(e. g., the GMT or OSCAR; see Sections 4 and 6).

5.6. Generated data

A measurement, according to the GSMM, outputs the raw measure-
ent data in a format that is usable for the evaluation model and

deally also available and re-usable for future assessment. The result
f the evaluation is the analysis report as the main outcome from the
xperiment. To increase transparency, reproducibility, and create the
ossibility to find measurement errors, metadata should be recorded for
ll experiments, which comprehensively describes the measurement for
uture reference. Especially when the experiments contain processing of
arge amounts of data (e. g., in machine-learning scenarios) or when
any metrics are recorded over a long period of time, data storage

nd management also become relevant. Here, a data repository, version
ontrol system, or the automated management of the data with a tool
uch as DVC12 or in a database could be considered. The metadata
hould include the following information13:

• the SuT, e. g., measurement device used, hardware and software
setups, etc.;

• the measured object, e. g., version, software type, product group,
system boundaries (especially in case of a distributed software);

• the scenario, e. g., its duration, repetitions, the pertaining life
cycle phase, etc.;

• the evaluation, e. g., analysis method used, scripts or tools, etc.;
• quality issues, e. g., sampling frequency, threats to validity, mea-

surement accuracy, etc.; as well as
• general data, e. g., date, time, stakeholders, etc.

One of the metadata items that is recommended to be recorded
or each measurement is the threats to validity of the experiment,
. g., following the categorization in Wohlin et al. [49, p. 68] and

12 https://dvc.org/ [2023-11-06]
13 An extensive list is available at https://gitlab.rlp.net/green-software-
ngineering/gsmm/-/blob/main/english/metadata_collection.md
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applied in Ardito et al. [58]. Recording the threats to external, internal,
construct, and conclusion validity enables reflection from an outside
point of view, and allows for improvements of the method and future
experiments (see also Cruz [59], who provides a guide to set up energy
efficiency experiments and reduce errors).

6. Description and mapping of referenced measurement methods

Typical applications of the GSMM are the development of new
measurement methods or the categorization of existing ones. Examples
of this categorization are whether or not the methods are useful for
assessing the energy and resource efficiency of software, which GSMM
components they cover, and how they relate their methodology to
each component (which is described in more detail in the model’s
repository). The GSMM is based on a number of established mea-
surement methods, which we briefly introduced in Section 4. In this
section, we put the GSMM into practice by revisiting these methods,
describing them in more detail, and mapping the GSMM components
to them. They serve to cross-check the model and, depending on the
application context, they can also be used directly to measure the
resource requirements of software. For an overview of how the methods
can be categorized into the GSMM, see Table 2.

6.1. Software energy and resource EfficieNcy analysis (SERENA)

For SERENA, auditable measured objects (A) include full software
products for local, distributed, and server systems, as well as mobile
apps, operating systems, container systems, and software parts such
as individual algorithms, libraries, or API calls. Explored measure-
ment goals include comparisons between software entities, e. g., for
optimization purposes, as well as individual measurements, e. g., to
just make the consumption transparent or to acquire the Blue Angel
eco-label.14 With SERENA, all measures and metrics (B) from Table 1
can be recorded and analyzed. Additionally, several ideas for the
energy efficiency factor of artificial intelligence models are included,
like ‘‘correctly classified test data points per Joule’’ and some further
metrics such as GPU temperature [40]. Furthermore, several criteria
from the criteria catalog for sustainable software products depend on
measurements according to SERENA.15

SERENA’s procedure model (C) stipulates separate measurements
for the baseline, idle, and usage scenarios. Standard usage scenarios
(SUS) are often defined as a series of actions that are intended to
represent a typical use of the software entity. The SUS is automated
and repeatedly executed. From the resulting measurement values, the
baseline measurement values (adjusted to the measurement duration)
is subtracted to get the energy and resource consumption induced by
the execution of the scenario. Optionally, further scenarios, e. g., along
the software life cycle, can be measured, such as load scenarios, bench-
marks, boot process, or steps for the creation of AI-based systems
like data preparation, training, etc. For software with remote data
storage and execution, two hardware systems were used and measured
separately, one for the server and one for the clients (which in some
cases were simulated, e. g., by scripting multiple, repeated calls to an
API, website, etc.). Mostly black-box measurements were conducted
for complete software products; however, white-box measurements,
e. g., on code-block level are also possible [56] with SERENA. Fur-
thermore, long-term black-box measurements, e. g., for in-production
systems, are possible.

The measurement setup (D), as well as the analysis method (E) for
full software products on local and client–server setups, is described
in Kern et al. [46] and is expanded to other setups, such as con-
tainerized setups [53], or IoT devices and single board computers for
AI/ML applications [60]. Fig. 3 shows an overview of the method used

14 For details, see e. g., https://eco.kde.org/handbook/ [2023-11-06]
15 https://gitlab.rlp.net/green-software-engineering/criteria-catalog

https://dvc.org/
https://gitlab.rlp.net/green-software-engineering/gsmm/-/blob/main/english/metadata_collection.md
https://gitlab.rlp.net/green-software-engineering/gsmm/-/blob/main/english/metadata_collection.md
https://eco.kde.org/handbook/
https://gitlab.rlp.net/green-software-engineering/criteria-catalog
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Table 2
Categorization of exemplary measurement methods.

Measurement procedure
model

Measured object and
measurement goals

Main measurements and
metrics

Measurement setup Data evaluation model

Software Energy and
Resource EfficieNcy
Analysis (SERENA)

all software types/parts energy consumption,
network traffic, hardware
usage

energy measurement by
power meter, hence
everything that can be
plugged into an outlet

analysis report

Green Software
Measurement Process
(GSMP)

all software types/parts
except mobile apps

energy consumption,
hardware usage

energy measurement by
power meter, hence
everything that can be
plugged into an outlet,
additionally measurement
of individual hardware
components

analysis report

Sustainability Assessment
Framework (SAF) Toolkit
and Green Lab

all software types/parts energy consumption,
network traffic, hardware
usage

hardware within the
testfarm and Green Lab
only

analysis report

Green Metrics Tool containerized software
only

energy consumption,
network traffic, hardware
usage

energy measurement by
power meter, hence
everything that can be
plugged into an outlet

dashboard-based analysis

SPECPower XGBoost
Model

only complete virtual
machine or bare metal

estimation of energy
consumption

CPU usage based
estimation

ML-based estimation

SDIA Framework and
Linear Approximation

all software types/parts CPU-based energy
consumption

everything with a known
CPU

mathematical estimation

Oeko-Institut’s Software
Footprint tool

all software types/parts,
simple measurements

CPU-based energy
consumption

CPU usage-based
estimation

energy and CO2
estimation

Container Overhead
Measurement (COMM)

containerized software
only

network traffic, hardware
usage

docker-based software none (raw data only)
Fig. 3. Overview of SERENA for local software with hardware-based logging of power
draw.

for local software with hardware power meter. Power meters from
Janitza are used in the lab at Umwelt-Campus Birkenfeld which deliver
power draw as a per-second average. Thus, a prerequisite for using
SERENA is that the software can be executed on a device that can be
plugged into the measured outlets if the hardware power meter is to
be used. For logging, ‘‘performance monitor’’ on Windows is used, and
collectl on GNU/Linux systems, as well as nvidia-smi for GPU metrics.
To automate the scenarios, either a workload generator is used such
as Actiona and command-line tools such as Bash scripts, or, e. g., for
measurements of software parts the logging in the source code may be
directly integrated.
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Fig. 4. Evaluation of Okular’s standard usage scenario with OSCAR (annotated with
scenario actions).

Fig. 4 exemplarily shows the evaluation for the measurements of
KDE’s document reader Okular,16 generated using the data evaluation
model (E) OSCAR. For this purpose, the timestamps of the start and
end of the measurement runs are used to superimpose the results
(gray lines represent measured values of individual runs, red line vi-
sualizes per-second average over all measurement runs). Furthermore,
OSCAR generates descriptive statistics for the metrics under considera-
tion (power consumption, RAM, CPU, network and memory utilization)
and can also be used to generate t-tests to compare the consumption of
scenarios with each other.

As data output according to the GSMM (see Section 5.6), the raw
measurement data and OSCAR analysis reports are provided in repli-
cation packages for all publications, e. g., in a Git repository. This
also includes relevant metadata for all phases. As an outlook for the

16 https://okular.kde.org/

https://okular.kde.org/
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Fig. 5. Process for evaluating the energy efficiency of software.

SERENA method, it is planned to better integrate the measurement of
distributed and cyber–physical systems, and, furthermore, to integrate
the OSCAR analysis script and user interface into the development
process of software products.

6.2. Green Software Measurement Process (GSMP)

The GSMP, depicted in Fig. 5, includes guidelines that describe
the process of performing measurements. It also includes the roles
participating in the process (client, measurement analyst, measurement
performer, and data analyst).

During the initial phase (Scope Definition) it is necessary to spec-
ify the requirements for the evaluation of energy efficiency and to
identify and describe the software to be analyzed. This is equivalent
to the measured object and measurement goals (A) of GSMM. Phase
II (Measuring Environment Setting) requires selecting the measuring
instrument, the Device Under Test (DUT), i. e., the hardware where
the tests cases will be run, selecting the set of measures and metrics
(B) to be used and to check that no other software is running in the
background and all services and processes that may affect the baseline
measurement of consumption are stopped. This corresponds to the
measurement procedure (C) and measurement setup (D) of the GSMM.
Phase III is focused on the measurement environment preparation (D),
checking that no other software is running in the background, setting
the number of times each measurement is repeated, and installing the
required software and services. The procedure also establishes that
once the measurements for one of the software entities are completed
the DUT must be reset to its initial state. This procedure is repeated
for the different software entities. In phase IV, the measurements are
performed and the raw energy consumption data is collected with
the measuring instrument (measurement data). Additionally, metadata
about the DUT is gathered.

Phases V and IV are the GSMP’s data evaluation model (E). The test
case data analysis is the focus of phase V and consists of turning the raw
data into useful information for the analysis. Moreover, the descriptive
statistics for each test case are obtained. In phase VI the data is then
analyzed, before a laboratory package is produced in phase VII that
reports the results and promotes replicability of the empirical study
conducted. This corresponds to the analysis report of GSMM. GSMP
can be used whether the energy consumption is obtained by means of a
software estimator or by a hardware device. Depending on the selected
measurement instrument, the measures could be different (CPU, mem-
ory, GPU, etc.). GSMP also supports the possibility of recovering other
measures such as the performance of certain hardware components or
different kinds of measurements that are necessary for further analysis,
e. g., information about the executed source code (Total Lines of Code
or Complexity).

GSMP is the methodological component of FEETINGS. The frame-
work also contains a terminological component (an ontology to define
all the terminology used in FEETINGS) and a technological component,
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composed by a hardware measurement device (EET -Energy Efficiency
Tester) and a tool (ELLIOT ) to analyze the data recovered by EET. In ad-
dition to the total energy consumption of the DUT (Device Under Test),
EET supports the measurement of different hardware components: CPU,
hard disk, GPU, and monitor. The sampling frequency of EET is around
100 Hz, which provides very reliable consumption information. The
main objective of the ELLIOT software tool is to provide a visual
environment that allows researchers to process the data collected by
EET, analyze them, and generate an appropriate visualization of the
results obtained.

When using FEETINGS, and then EET, it is only possible to measure
local software running on the DUT. So, the measurements are limited to
local software, web applications, client, or server applications. Usually
the recovered raw data and the processed results from the studies are
made public on repositories. FEETINGS and GSMP can therefore be seen
as instantiations of the GSMM, applied to software able to be installed
locally on a DUT.

6.3. SAF toolkit and Green lab

While the SAF Toolkit was developed to guide decision-making on
sustainability from the perspective of software architecture, the experi-
mental platform Green Lab was founded to address the challenges in the
field of software energy efficiency research by providing a transparent
platform for conducting concrete experiments. Notably, both methods
can be utilized together. Green Lab experiments can be built upon the
SAF Toolkit and derived measurements can be fed back. Thus, the SAF
Toolkit, together with the Green Lab, can be seen as an instantiation
of the GSMM, providing tools to identify the components in their use
case and eventually executing the planned experiment in a controlled
environment.

6.3.1. SAF toolkit
The SAF reflects on the four dimensions of sustainability according

to Lago et al. [61], i. e., Technical, Economic, Social, and Environmen-
tal. While the environmental dimension may encompass the broader
impacts of software activities on our natural ecosystem, for the GSMM
this dimension aims to address the ecological concerns, i. e., the re-
source and energy efficiency of software-intensive systems. The SAF
is composed of several components to provide a holistic assessment
of all different sustainability dimensions. In the context of the GSMM
framework, the application areas of the toolkit are in the design as well
as monitoring phase of a concrete experiment. Below, we focus on the
two most relevant components.

Decision Maps (DM) [62] are a visual notation to frame and
illustrate sustainability-relevant design and quality concerns, as well as
their expected impact. In the context of GSMM, Decision Maps help
to define the measured object and determine concrete measurement
concerns (A). Concerns can range from very specific, such as execution
time or network traffic, to a more high level, such as CO2 footprint or
maintainability. Impacts can be further classified into three types: (i) Im-
mediate impacts, referring to instantly observable changes; (ii) Enabling
impacts, arising from use over time; and (iii) Systemic impacts, referring
to persistent changes and requirements, such as economic structural
changes. As an example, while the execution time can be observed
immediately and has a direct impact on the system, the CO2 footprint
must to be observed over time.

After the concerns are established, the Sustainability-Quality (SQ)
Model [63] defines the actual measurement plan. The SQ model con-
solidates the definitions about the identified concerns and results in a
collection of Quality Attributes (QAs) categorized into the four sustain-
ability dimensions. For instance, execution time relates to the technical
dimension, while energy efficiency relates to the environmental dimen-
sion. To be measurable, the SQ model operationalizes the identified
QAs by assigning a set of metrics and measurements (B) to each QA.
After an experiment has been executed, the SQ model serves as data
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Fig. 6. Sustainability-Quality (SQ) Model example. TEC = Technical; ENV = Environmental; ECO = Economic; SOC = Social.
Fig. 7. Decision Map (DM) example.

valuation model (E) and manages the generated data (see Section 5.6).
ext to the metric and unit, the SQ model can include the analysis

eport, i. e., in form of a dedicated measurement column keeping track
f all measurement data that has been recorded. This allows for future
valuations of the complete experiment.

Fig. 7 depicts a practical example of a DM identifying an arbitrary
oftware system and its accompanied feature (example based on [64]).
s automated regression testing might have a positive impact on the
verall test-execution time, a negative environmental impact on the
nergy efficiency due to higher computational power might need to be
onsidered. Such identified concerns (i. e., QAs) are further defined in
he SQ model and operationalized by identifying concrete metrics, as
hown in Fig. 6.

.3.2. Green lab
The Green Lab utilizes a mixed approach to conduct experimen-

ation for energy-efficient software by identifying energy hotspots
hrough a two-phase process, which consists of candidate hotspot
dentification and hotspot verification [65]. By providing a controlled
nvironment and a dedicated Energy Lab, the Green Lab aims to
ontribute to the understanding and advancement of energy-efficient
oftware development and to help researchers in the field overcome
he challenges they face.

Auditable measured objects (A) are all software products that can
e run on the Green Lab’s physical servers (with varying architectures
nd OSs), a test farm composed of more than 20 Android smart-
hones/tablets (covering several generations and multiple technical
pecifications), and several robots. Servers, mobile devices, and robots
re enriched with state-of-the-art power monitors/profilers (e. g., Mon-
oon power monitor, Watts Up Pro Meter, Intel RAPL, Android Battery-
anager, INA219, etc.).

In terms of measures and metrics (B) and procedure model (C),
he Green lab also provides a set of open source tools for conducting
nergy efficiency research on a variety of platforms according to well-
nown guidelines for empirical software engineering research [49,50].
he main tools used in experiments within the Green Lab include:

• Android Runner (AR) [66]: a tool for automatically executing
measurement-based experiments on native and web apps running
on Android devices. It aims to streamline the execution of these
experiments, making them more automatic, customizable, and
replicable. AR produces an output in the form of measurements
(generated by profilers) and logs (produced by the Android OS
during the experiment).
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• Robot Runner (RR) [67]: a tool for executing measurement–based
experiments on robotics software. RR is a plugin-based, Robot
Operating System (ROS)-dependent tool that automatically sets
up, starts, and resumes user-defined experiments. The primary
output of RR is a populated run table which includes factors and
required measures, such as CPU usage, memory usage, and energy
consumption. RR allows plugin developers to focus on producing
measures and providing a default aggregation policy, while RR
takes care of the experiment orchestration. RR is the first tool
of its kind in the robotics domain, with similar tools existing
for energy efficient mobile development, like Android Runner,
GreenMiner, and PETrA.

• Experiment Runner (ER) [68]: a platform-independent tool to
automatically execute measurement-based experiments. The ex-
periments are user-defined and compatible with plugins, both
included or user-made. ER can be and is used in combination with
the aforementioned Green Lab machines to conduct experiments
related to power consumption.

In the Green Lab, the typical measurement setup (D) involves at
least two physical machines. One machine serves to orchestrate the
experiment (it is usually deployed either on a virtual machine run-
ning on a server or on a Raspberry Pi, depending on the nature
of the experiment), while the other machine hosts the subjects of
the experiment (e. g., another server for experiments on server-side
software, a smartphone for experiments on mobile apps, a robot for
experiments on robotics software, etc.). The power monitor/profiler
(e. g., a WattsUp Pro meter) is directly connected to the subject machine
and measures/profiles its power consumption with a given sample rate
(e. g., from 1 Hz with the WattsUp Pro meter to 5 kHz with the Monsoon
power monitor). The orchestrator machine is responsible for collecting
low-level measures from the power monitor/profiler, to transform them
into higher-level metrics (e. g., energy), and to persist them according
to an open file format, such as comma-separated values or JSON,
depending on the needs of the experiment. The interested reader can
refer to [69, Sec. 3.4] for a concrete example of the infrastructure used
in the Green Lab.

For the data evaluation model (E), in order to promote trans-
parency, reproducibility, and applicability of scientific experiments on
software energy efficiency, the researchers managing the lab make all
the collected measurement data and the metadata about the measure-
ment setups used in the Green Lab publicly available in a GitHub
repository.17 Analysis reports are generally shared with the research
community via scientific publications, e. g., [70–73].

6.4. Green metrics tool

The Green Metrics Tool (GMT) is a versatile energy measurement
tool created by Green Coding Berlin.18 By isolating applications through
containers in the measurement setup (D), it enables precise measure-
ments of a multitude of factors like power, network, disk, and memory
consumption. By leveraging existing infrastructure files, currently lim-
ited to Docker Compose files, it seamlessly integrates as a drop-in

17 https://github.com/s2-group
18 https://www.green-coding.berlin/

https://github.com/s2-group
https://www.green-coding.berlin/
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measurement solution. The containers and networks are orchestrated
according to the supplied infrastructure file and, as proposed in the
GSMM under measurement procedure models (C), a usage scenario
is executed. As each component of the software is encapsulated in a
container, the measurements can be component specific and all aspects
of the application can be precisely measured.

In order to collect metrics, the GMT utilizes a flexible plugin in-
frastructure that can attach different so-called ‘‘metric-providers’’ to
capture the performance and energy metrics from the containers and
host system. This gives great flexibility when deriving the measure-
ments and metrics (B). At the time of writing the tool supports CPU
Utilization (system-wide and at container-level), CPU energy (system-
wide, using RAPL), CPU clock speeds, DRAM usage at container-level,
DRAM energy (system-wide, using RAPL), network transferred data at
container-level, temperature, fan-Speed, AC energy (system-wide us-
ing IPMI, PowerSpy2, SPECPower XGBoost model estimation, or SDIA
model estimation), and DC energy (system-wide, using PicoLog).

In general, the GMT can run on GNU/Linux, macOS, and Windows,
while GNU/Linux is the preferred architecture as the docker containers
can be monitored in more detail. There is no limitation on what type
of application can be measured as long as it can be containerized
on one of the architectures listed above (A). This includes also GUI
applications like for instance browsers. As the GMT does a software life
cycle assessment, it automatically separates each benchmark run into
distinct steps: Baseline, Install, Boot, Idle, Run time, Remove. Through
this setup, each step of the software life can be measured precisely and
independently (C).

The GMT can be run on various hardware configurations in ref-
erence to the measurement setup (D). When developing the usage
scenario files or when precise measurements are not the key metric,
a local environment is sufficient. For local developer setups without
power-meters or RAPL access, Green Coding Berlin supplies a free-
to-use measurement cluster. This has a specialized, no interruption
GNU/Linux distribution installed and various hardware components for
exact measurements.

As described in the GSMM, once the measurement is complete,
there are various ways to analyze the data (E). The GMT comes with
a dashboard that enables detailed analytics and comparisons between
different runs. It is also possible to query an API or connect external
dashboards like Grafana.19 To enable a meaningful interpretation of the
ata, the GMT collects as many machine-dependent factors as feasible.

.5. Specpower xgboost model

As it is not always possible to run jobs in a controlled environment,
reen Coding Berlin has developed a machine learning model that can
stimate energy usage based on readily available input parameters.
he model is based on a paper by Interact DC and the University of
outh London [51] and utilizes the SPECPower dataset20 to develop
n XGBoost model for estimating the AC power draw of a server. This
odel accepts a variety of input parameters (e. g., from Table 1), with

nly CPU utilization being mandatory. Optional parameters include
PU chips, CPU threads, CPU cores, CPU frequency, CPU architecture,
PU make, release year, RAM, TDP, and vHost ratio.

The optional nature of these parameters allows the model to func-
ion in constrained environments, such as cloud-based measurement
etups (D), where information regarding the CPU name or release year
ight not be readily accessible. Although supplying more parameters

nhances the model’s precision, it is designed to maintain broad ap-
licability. The model’s output can be either the power draw or the
ccumulated energy since the last output.

The model is operating system and architecture agnostic and does
ot impose a specific functional unit. To accommodate the reality of

19 https://grafana.com/ [2023-12-01]
20 https://www.spec.org/power_ssj2008/
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shared (virtualized) environments, the model employs a vHost-ratio
input variable. This correction factor can be utilized when the user
is a guest on the system and only a portion of the energy should be
attributed to them.

An internal validation script21 demonstrates that the open source
model’s in-sample accuracy is comparable to the Interact DC model,
with an error of approximately 10 W (∼10 %).

6.6. Oeko-Institut’s software footprint tool

The Software Footprint Tool runs in parallel with the measured
software and captures the CPU load. The measured object (A) can be
any software run locally, identified by its process-name and ID. Further
child-processes created by the software under test are also accounted
for. Required metrics (B) are the maximum power draw of the device
and the operating system’s process statistics. The tool consists of a
Python script22 for logging the CPU processing times and for calculating
the energy consumption and CO2 emissions.

First the maximum power draw is measured with an external
power meter (D) using a workload script that exposes the CPU to
the maximum load. The max power draw is then entered in the
softwarefootprint script and the script is started, passing it the
name of the process to be monitored as a command line argument (C). It
then logs the actively consumed CPU times and share of used processor
cores over time. This makes the measurement independent of which
background processes are running on the computer.

The underlying computational method (E) for calculating energy
consumption assumes that (i) the maximum power consumption of the
computer 𝑃𝑚𝑎𝑥 is reached at maximum processor utilization and that
(ii) the software’s electrical power draw correlates with its processor
usage. If, for example, a software uses only half of the processor
power (50 %) or half of all available CPU cores over a time period
𝑡, the energy consumption of the software is calculated to be half
the maximum power draw multiplied by the execution time (𝑊 =
50 % × 𝑃𝑚𝑎𝑥 × 𝑡) (E). The values calculated in this way only match the
measured power draw of the SuT in case of the full utilization of all
CPU cores. If the SuT is only used partially, its energy consumption is a
combination of idle power and workload power. The calculation logic
of the softwarefootprint method assigns the analyzed software
a share of the idle power draw that corresponds to the share of CPU
utilization.

With the tool, software developers are able to test their software
initially and to observe further in the development process whether
the energy consumption or the CPU time used changes positively or
negatively. Also various use cases of existing software can be tested.
As an example, the loading of different web pages with the Firefox
browser is shown in Fig. 8. Measurements were taken over a defined
period of 60 s. The tool logged the cumulative CPU times and calculated
how much energy was consumed by calling the respective web page
during this time. A practical use case now consists of either comparing
different websites with each other or optimizing one’s own website to
achieve the lowest possible CPU runtime.

Due to its simplicity, the method also has some weaknesses. First,
the measurement results are purely estimates and do not reflect the ac-
tual energy consumption of the computer. Second, the figures obtained
with the method are only valid on the particular SuT hardware. Third,
the method considers only the power draw from CPU usage, and omits
other important load drivers like network, etc. The tool is therefore
suitable for optimizing the performance of a software product, but less
suitable for comparing software across platforms.

21 https://github.com/green-coding-berlin/spec-power-model/blob/main/
interact_validation.py

22 https://github.com/OekoJ/softwarefootprint

https://grafana.com/
https://www.spec.org/power_ssj2008/
https://github.com/green-coding-berlin/spec-power-model/blob/main/interact_validation.py
https://github.com/green-coding-berlin/spec-power-model/blob/main/interact_validation.py
https://github.com/OekoJ/softwarefootprint
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Fig. 8. Cumulated CPU runtime and energy consumption of different website calls
(start page).

6.7. SDIA mathematical framework and linear approximation

The SDIA developed a set of formulas describing a general mathe-
matical framework to derive a linear approximation through only CPU
usage measurements (B), one of the most common proxies used in
various tools and implementations. The measurements of the CPU usage
and linear approximation thus serve as a rule-of-thumb and give an
estimation methodology in even the most data-scarce scenarios, since
most practical scenarios allow for measuring CPU usage. The linear
approximation can be used for any type of software and SuT, as long
as the Thermal Design Power (TDP)23 of the CPU is known (D). Given
ceteris paribus, one would measure CPU before, throughout, and after
running a particular program and deduce the energy consumed related
to the program afterward.

Approximations, estimations, and statistics are merely as powerful
as the validity and robustness of the underpinning assumptions. For the
SDIA framework, these assumptions consist of:

• TDP is an accurate proxy for measuring the maximum amount of
energy a CPU can consume.

• There is a fixed energy allocation between the CPU and the other
hardware components, relative to the total energy consumption.
In other words, this model assumes the consumption of memory,
networking, storage, etc. to be a fixed percentage of the CPU
energy consumption.

• When the server does not run at full capacity, it assumes that the
energy consumption decreases linearly with the energy consump-
tion of the CPU.

• This model ignores the idle consumption, such that linearity holds
up until completely powering off.

Concerning the GSMM, the approximation can be categorized as
direct measurements of the CPU usage metric while a program runs.
All other things being equal, CPU usage can then be converted into the
consumed energy through the linear approximation, thus targeting (E)
within Fig. 1. CPU usage can be measured by a variety of tools and
programs. In the SDIA test setup, RAPL was used.24

6.8. Container overhead measurement methodology (COMM)

The Container Overhead Measurement Methodology (COMM), as
proposed by Kreten et al. [74], is a framework designed for the mea-
surement goal (A) of evaluating containerized software deployed using

23 The maximum amount of heat a chip can dissipate before it starts to wear
down or malfunction.

24 https://sdialliance.org/blog/sdia-digital-environmental-footprint-
reaches-a-key-milestone/
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Docker technology. COMM aims to pinpoint inefficiencies within con-
tainer configurations and their operational environments, offering a
systematic approach to performance assessment for software within
containers. In terms of Measurements and Metrics (B), as delineated
in Table 1, COMM currently omits consideration of GPU-centric met-
rics and persistent storage performance. It primarily focuses on the
consumption of CPU resources and memory utilization. Within its pro-
cedure model (C), COMM, which is based on SERENA (see Section 6.1),
uses measurements for the baseline, idle, and usage scenarios. In order
to find efficiency gaps in container configurations, measurements are
repeated 10 times for 60 s for various settings that are suitable for the
SUS. Different settings of containers, such as the layer system, storage,
network, or logging drivers, can be examined.

The configuration of the measurement environment (D) includes
one or several SuT, which are connected to SMTP-compatible power
meters, such as commonly available server rack Power Distribution
Units (PDUs). In this setup, the functions of workload generation as well
as data aggregation and evaluation are encapsulated within a singular
Python script. While a default workload generator is provided, it can
be substituted with alternative tools for specific usage scenarios, such
as automation tools for repetitive tasks or network stress tools for web
service simulations. This flexibility allows for customization according
to the unique demands of the application being tested. Similar to SER-
ENA, COMM produces raw data outputs that can readily be integrated
with the OSCAR data evaluation model (E). Moreover, COMM includes
a Python-based analysis tool, facilitating the examination of scaling
within container environments. This tool aids in determining the op-
timal scaling points regarding CPU and RAM usage for deployment in
container orchestration platforms, thereby enhancing the efficiency of
container cluster management.

7. Discussion and outlook

The GSMM aims to enhance software sustainability, particularly
in the realm of measuring software-induced consumption. However,
it is important to note that the methods encompassed within the
model primarily address the core components of complex software
systems. As of now, these methods are not yet fully applicable to
complex architectures and distributed systems. Despite this limita-
tion, the GSMM is suitable for projections and simulations, as demon-
strated by several of the measurement methods. The GSMM serves as
a reference model, synthesized from a combination of various mea-
surement methods (bottom-up approach) and a structured analysis
of software measurement requirements (top-down approach). Table 2
shows an overview of the organization of the analyzed measurement
methods under the GSMM umbrella, highlighting its current focus and
limitations.

The measurement categorization and metadata collection in the
GSMM git repository provide a more detailed breakdown, indicating
potential areas for future expansion of the model’s applicability. Cur-
rently, the measurement methods can be broadly divided into two
categories: those that can measure nearly any software type, and those
specifically designed for measuring containerized software. This dis-
tinction reflects the current focus on more straightforward software
structures as opposed to complex or distributed systems. In general, this
observation aligns with the division between comprehensive methods
and specialized methods, e. g., for containers, mobile apps, embedded
systems, etc.

While almost all models concentrate on measuring or estimating
energy consumption, there are notable exceptions, such as COMM.
Furthermore, there is significant variation in the measurement setup
and data evaluation models across different methods, which could be
further developed to address the challenges of complex architectures
and distributed systems in future iterations of the GSMM.

By delineating the main components for assessing software’s energy
and resource usage, the GSMM simplifies the process for developers

https://sdialliance.org/blog/sdia-digital-environmental-footprint-reaches-a-key-milestone/
https://sdialliance.org/blog/sdia-digital-environmental-footprint-reaches-a-key-milestone/
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and researchers to either devise new measurement models or choose,
tailor, refine, and expand upon existing methods. This is achieved, for
instance, by incorporating metadata collection to enhance the reusabil-
ity of experiments. This ensures comparability and fosters a cohesive
and comprehensive approach within the Green Software Community.

It must be taken into account that software is always connected
to the underlying hardware and that this can also be a distributed
system. There, the software is spread over several nodes or triggers
complex data exchange processes over several network types. A certain
comparability of different products can be achieved via metrics such as
‘‘useful work done per Joule’’, provided that this ‘‘useful work’’ can be
specified in a comparable way. It should also always be considered that
used technologies such as databases, frameworks, and SDKs are error
sources that can hinder exact comparisons [75]. Accordingly, the model
defines guard rails as to what such measurement procedures can entail,
such as keeping all other influencing factors equal and only exchanging
the part that is of interest.

Our contribution presents several concrete procedures that can be
applied directly. Further procedures can also be developed with the
help of the GSMM. We could not include all currently available methods
in this article due to the diversity of hardware and software solutions
(desktop, distributed, mobile, cloud applications, etc.). There is not
only one concrete procedure, but the GSMM contains the essential com-
ponents for measuring the resource and energy efficiency of software
in a variety of ways.

This collaborative approach promotes the expansion of knowledge
on existing methods, tutorials, guidelines, metrics, and tools, all aimed
at measuring and assessing the resource and energy efficiency of soft-
ware. Moreover, by offering a structured framework and an open repos-
itory for universal contribution, the GSMM empowers the scientific
community and software developers, promotes a shared understanding,
clarifies terminology, and we think it is a step toward integrating
energy and resource measurements into software practice. In terms of
applicability, the GSMM is versatile, accommodating various system
architectures, software and hardware types, and usage scenario types.
Since its primary focus is on the direct effects of software, such as its
energy consumption, the GSMM itself does not account for secondary
and tertiary effects of software, but it can be extended (e. g., via the
SAF or GREENSOFT model) to include these factors as well.

Next steps are (i) to integrate and test other models, and (ii) to
apply these models to additional software products in order to set
up a database of measurement results for several software solutions.
This also includes tips and tricks regarding standard usage scenarios,
automation, data processing, as well as expanding the open reposi-
tory. With regard to the further development of the model, minimum
standards can be developed so that a measurement methodology will
be considered robust and directionally reliable. In a further step, the
GSMM can also be adapted to include approaches to consider the
software product context of the software stack, the data center envi-
ronment, and also the integration into the ‘‘energy smart grid’’ (energy
aware software).
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