
sustainability

Article

An Analysis of the Energy Consumption Behavior of
Scaled, Containerized Web Apps

Sandro Kreten * ID , Achim Guldner and Stefan Naumann

Institute for Software Systems, Environmental Campus Birkenfeld, Trier University of Applied Sciences,
55765 Birkenfeld, Germany; a.guldner@umwelt-campus.de (A.G.); s.naumann@umwelt-campus.de (S.N.)
* Correspondence: s.kreten@umwelt-campus.de; Tel.: +49-6782-17-1723

Received: 30 May 2018; Accepted: 31 July 2018; Published: 1 August 2018
����������
�������

Abstract: Containerization is one of the most important topics for modern data centers and web
developers. Since the number of containers on one- and multi-node systems is growing, knowledge
about the energy consumption behavior of single web-service containers is essential in order to save
energy and, of course, money. In this article, we are going to show how the energy consumption
behavior of single containerized web services/web apps changes while creating replicas of the service
in order to scale and balance the web service.
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1. Introduction

In the field of green IT, virtualization is considered an essential measure for saving energy [1].
Therefore, it makes sense to study the energy efficiency of widely used virtualization tools and
alternative techniques. This year, Docker, one of the most popular options for virtualization in data
centers [2], will celebrate its fifth birthday. Since it was presented at PyCon in 2013, Docker became
very popular in the developer community, with more than 29 billion downloads and 900 thousand
images in Docker Hub [3]. It “provides the ability to package and run an application in a loosely
isolated environment, called a container. The isolation and security allows running many containers
simultaneously on a given host.” [4]. The containerization of web apps through Docker is one of
the first widely accepted approaches that is used in enterprises, in order to improve continuous
delivery and integration as well as the reliability and scalability of services and, especially in this case,
microservices [5]. Of course, there are different container software approaches that try to compete
with Docker by using different structures and additional functionalities. Therefore, it is reasonable
for corporations that want to use containers to check all the features of Docker and their competitive
products. In the first part of this article, we compare the Docker container Model with Rocket,
an open-source container engine developed by CoreOS (acquired by RedHat in January 2018), as well
as their features and energy consumption by using web-server containers. As containers are used
because they are more lightweight than virtual machines (VM), a closer inspection of the energy
consumption behavior of the two different approaches makes sense; especially when we consider that
most of the time, container software is used on clusters, where the containers are spread over several
nodes via cluster management software. In order to create reliable and scaled environments, software,
such as Kubernetes, duplicates containers onto other systems or the system it is currently running on,
to prevent cancellation of services and avoid the overload of any single resource. Moreover, systems in
clusters, built for containerization, are often occupied by more than one container. In multiple cases,
many containers of the same type are running on the same node/system. For this reason, we also
show the energy consumption behavior of equivalent containers on one system.
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2. Experiment Backgrounds, Prospects, and Related Work

Since green IT is an established field in research and practice, the last few years have shown that
the energy consumption of software is gaining importance in the scientific world [6]. Software can
be seen as a driver for the energy consumption of information and communication technology in
general [7], and thus is a lever to reduce this consumption. Existing research approaches are summed
up by the term “green and sustainable software” and comprise, for example, definitions, characteristics,
and measurements for the energy efficiency of software [8,9]. However, due to the constantly increasing
digitalization, the share of the general power consumption generated by software is also growing [10,11].
On the one hand, this increase in power consumption also applies to the increasing number of server
systems [12] and clusters used for processing large amounts of data, virtualization, and the provision of
all kinds of web services. On the other hand, containerization provides the possibility to ship services
without creating a new VM for each service. In enterprise systems, containers are usually running on
VMs in order to obtain security for the cloud services of different clients. Therefore, several connected
services can run on one VM, decreasing the total number of needed VMs.

Additionally, since the number of containers on clusters is growing due to more and more
powerful servers, it is necessary for computing and data centers to know about the energy consumption
of the smallest unit in the system, to simulate the overall energy consumption, and therefore,
estimate the energy costs per year. When working on productive clusters, where web services are
scaled via cluster management tools such as Kubernetes, scaling depends on the CPU utilization of
every node in the cluster. Deployments are only made on nodes with adequate available resources.
Hence, a “replica”, which means a complete copy of a container with all its functionalities, can be
deployed on the same node as its source. As two instances of the same service on two different nodes
(same node specification with the same load on the service) should have the same CPU utilization,
two questions arise especially: (1) “Does a containerized web service under load consume the same
energy as a scaled service (two or more containers of the same type) with evenly distributed load?”
(scaled on one or several nodes) and (2) “Does a containerized web service consume the same energy
on a system on which the same service is already running?”. The aims of the experiments, as well as
the prospects of this article, result from the mentioned questions.

Although containerization, Docker [13], and, of course, energy awareness are current topics [14],
research considering their combination lags behind. In some papers, such as [15,16], the topics are only
briefly raised. Most of the papers use other approaches to deal with the subject matter. For example,
in [16], entire systems are compared natively and inside Docker containers, whereas we are more
concerned with single containers connected to a network, without referring to overall systems, but taking
scalability into account. Other papers are concerned with solving well-known problems; for example,
the creation of a container broker system for monitoring containers and their consumption [17] or the
consolidation of VMs if containers can be moved to other systems [18].

3. Measurement Setup and Results

In the following subsections, we show the results of a preliminary experiment in order to verify the
decision of using Docker, describe the measuring environment, and present our measurement results.

3.1. Preliminary Experiment

Before investigating the energy consumption behavior of single containers, it is necessary to compare
Docker to different container software solutions. Since LXC (Linux Containers) formed the basis of Docker
in the beginning of its development, it seems to be an inappropriate choice for a comparison. However,
LXC is mostly used for containerization on an operating-system level. The formerly mentioned software
Rocket (also known as rkt) was first based on LXC as well. In contrast to Docker, Rocket does not use
a daemon, on which the container processes are running. Therefore, each container appears as a real
system process. The exact differences are shown in Table 1.
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Table 1. Hierarchical container engine process models and process description [19].

Rocket (rkt) Process Description Docker Process Description

1 systemd
System daemon for
starting, monitoring,

and closing processes
systemd System daemon for starting,

monitoring, and closing processes

2 rkt run container
Processes the client

command, talks to init
systems such as systemd

docker run
container

Processes the client command, talks to
Docker daemon API and containerd

3 application Process of the application docker engine Process of the docker
containerization technology

4 containerd Container runtime system with open
standard of the Open Container Initiative

5 run C Container runtime system, used to
interact with the host system

6 application Process of the application

There is, of course, more software that can be used for containerization; for example, Packer by
HashiCorp (https://www.packer.io/intro/index.html) or Flockport (https://www.flockport.com/).
However, since our focus was on Docker as the best-known container engine, we wanted to juxtapose
it with a comparable, alternative system. On the one hand, unlike Rocket (see below), Flockport is
not compatible with Docker images. This makes it difficult to compare containers, because they are
built in other ways. Packer, on the other hand, is geared towards the automated creation of various
images (VM and container). Thus, it is basically designed for other functionalities, whereas Rocket
tries to make a different approach for the same functionalities as Docker. For this reason, we decided
to compare Docker and Rocket. However, since Rocket is such a lightweight alternative for Docker
in terms of the number of system processes started while using one container (see Table 1), it gives
a satisfying overview of the energy consumption behavior of container software, since containers
are only separated from the system by a Rocket bash command (tracking actual container processes
is possible).

3.2. Measuring Environment

To measure the energy consumption of containers, we devised the experimental set-up in
accordance with ISO/IEC 14756, as introduced by Dirlewanger [20]. In order to apply the measurement
method described in [14], it is necessary to facilitate a usage scenario, so that the criteria can be
reproducibly applied to different evaluations of software sustainability. At first, we had to generate
different kinds of use cases for containers (ordinary websites, mailers, web interfaces, etc.), to determine
the energy consumption of the software in variable situations. Because containers are mostly connected
to each other by the internal network systems of the container software or communicate with the
outside world via webservers, we could reduce every single use case to a minimally built container
image. On the container, a webserver, which is also set up with a minimal configuration (see below),
is running. This represents only one usage scenario as described in [14]. With this minimal container
image, it was possible to create a sufficient quantity of small containers on our system, which was put
under load with a webserver stress test tool. It should be mentioned that the amount of containers
always depends on the hardware used. In our case, it is limited by the CPU and the network controller.
Even though this amount of containers is smaller in comparison to an enterprise solution, it is sufficient
to yield reliable measuring results, because we presuppose that higher amounts of containers could be
extrapolated. Our measuring environment is visualized in Figure 1.

https://www.packer.io/intro/index.html
https://www.flockport.com/
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Figure 1. Measuring environment [21].

The load is produced with the Linux tool Siege [22], which allows us to generate load in a specific
time interval or restrict the number of server hits (load is produced as fast as possible). As a result,
we were able to monitor the transaction time and, therefore, the availability of the containers as well as
the energy consumption behavior over a specific time interval. The exact measuring parameters are
discussed in Section 3.3.

As a data aggregator and evaluator as well as a workload generator, we used a MacBook with
four cores, each with 2.4 GHz and 4 GB of RAM. In order to collect the information about the energy
consumption of the containers, we wrote a small Python script that pulled the information from our
measuring devices via Simple Network Management Protocol (SNMP). The energy consumption of
the system under test (SUT) was determined with a GUDE Expert 1202 [23] power distribution unit
which can be used in 19-inch server racks. This allowed our experiment to be more strongly related
to a real-life scenario. Consequently, we decided on using a SUT which comes close to server blades
used in data centers. Since the energy consumption of real server blades is generally high, it would
be nearly impossible to get the energy consumption of one specific container, because it would get
lost in the white noise of the energy measurements of the server blade. However, in order to compare
the results to servers running several containers, we needed the energy baseline of one container.
So, we employed an UDOO X86 Advanced Plus, a small blade with an Intel Celeron N3160 2.24 GHz,
4 GB of RAM, and Gigabit Ethernet [24]. Docker and Rocket ran on the UDOO with Ubuntu 16.04.
A second UDOO was used the compare the results of the experiment on one system to a two-system
setup with several containers. One UDOO has 4 W as its power baseline.

The container images were built with the official Ubuntu image found on Docker Hub according
to [25]. We used the Ubuntu base image to create a more accurate comparison to the basic system
of the UDOO and to a native NGINX. Furthermore, we cannot say to which extent NGINX has
been changed in the official image. In addition, the replication package shows that the official
build consumed more power (NIGNX official up to 1.3 W; our image: up to 1.1 W), even though it
was smaller (NGINX official: 102 MB; our image: 180 MB). Since, as mentioned before, Rocket can
translate Docker images into its own format, it was easy to generate the same image for two different
container engines. As a webserver, we installed NGINX and configured it minimally, so only 376 Bytes
were downloaded with each server-hit of the testing tool. The minimal configuration of NGINX
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corresponds to its default configuration. Thus, a static default HTML file is served that generates the
376 Bytes of downloaded content. The size of the downloaded content influences the speed of the
hits generated by Siege, because all content is downloaded before the next hit starts. Since we wanted
to generate as many hits as possible in a test run, the content had to be small. Therefore, the default
HTMLpage of NGINX is well suited for the test. It is also easy to replicate, as it is included with every
NGINX installation. Furthermore, the configuration files are cleaned up by removing unnecessary
code, according to [26]. DeJonghe [26] does not describe a minimal configuration, but shows which
code is needed for special functionalities, such as high-performance load balancing, authentication,
and deployment, and therefore this code was removed. NGINX workers are set to auto (which means
that all available cores will be auto-detected), and the number of simultaneous connections is set to 768
by default. As mentioned above, we wanted to create a lot of load in one minute. With, for example,
only one worker, the number of finished requests would be much lower and therefore the work done by
the server in one test round would be less. The configuration file, as well as the default sites-available
file, can be found in our replication package on GitLab for further information [27]. Preliminary tests
showed that the minimal build of a container basis (in this case, container image basis and webserver)
does not always deliver the best power measurement results. Normally, we could have written our
own small server with Python or Go, but then we would have had to compare the languages’ energy
consumption behavior first for the reason of completeness.

3.3. Results

3.3.1. Comparison between Docker and Rocket

As already mentioned, Rocket does not use a daemon like Docker. As a result, we had to use
systemd to start a container in the background. In addition, it can be expected that a container built
out of the same image should consume less energy than in Docker. For this test, a single container
(in Docker and Rocket) was started and set under load for 1 min with a growing number of simulated
concurrent users. In order to validate whether the results of the measurement were replicable, the first
test (load from one user on one container) was repeated 100 times before we started the main experiment.
Herein, every test round was started manually 10 times, as can be seen in the replication package file
measurement_test_series_1.xlsx. The following Figure 2 shows the results in comparison to a native
NGINX tested with the same parameters and configuration (see configuration of the NGINX containers
above). The baseline of 4 W is, as in every other subsequent Figure, already subtracted from the results.

Figure 2. Power consumption of Rocket and Docker relating to NGINX.

As we can see, the power consumption of Docker and Rocket differs only minimally, but in
continuously occurring watt intervals. The difference is only substantial when several NGINX
containers are used in a cluster. In another case, it would of course be possible to save energy
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by using native NGINX. However, there is the problem of that only one web server can be active
per system. The figure shows the mean values of test rounds. The divergences of the measurements
were minimal.

Because the difference between Rocket and Docker is so small relating to single containers, the
following experiments were only set up with Docker. Additionally, it was easier to create a workflow with
Docker than with Rocket because of the existing Docker daemon. Starting and stopping containers inside
the measuring environment was faster and less complicated because of Docker’s better documentation
and, of course, the fact that Docker is more widely used than Rocket.

3.3.2. Comparison of One Container under Load to Several Containers

As mentioned at the beginning of the chapter, we wanted to answer the question, how several
containers of the same type (web apps in general) behave on one system, considering power
consumption. For this purpose, we started with one Docker container, configured as mentioned
before (NGINX, minimal configuration), put it under load for one minute, and repeated the test
100 times. The results give us an average baseline of the power consumption of one container and,
of course, its capability related to availability and “concurrency” (average number of simultaneous
connections, a number which rises as server performance decreases). After this, we apportioned
the amounts of hits (through the configuration of Siege) among two containers. To guarantee the
same amount of hits on each container, the load was produced by 2, 4, 8, 16, 32, and 64 simultaneous
users. Therefore, we could split the users accordingly. Afterwards, the same test was repeated for 4,
8, and 16 containers on one system. The results of the test are shown in Figures 3–6. As we can see,
the measurements for two users allocated to eight and two or four users allocated to 16 containers
are missing. This is the case because even though it may be possible to split the hits of one user to
two containers accurately (e.g., configuring Siege with an extended delay configuration), the readings
could not be distinguished from the energetic white noise.

Figure 3. Average power consumption of a model web app with an amount of hits on one NGINX
container and allocated to two NGINX containers.

Figure 4. Average power consumption of a model web app with an amount of hits on one NGINX
container and allocated to four NGINX containers.
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Figure 5. Average power consumption of a model web app with an amount of hits on one NGINX
container and allocated to eight NGINX containers.

Figure 6. Average power consumption of a model web app with an amount of hits on one NGINX
container and allocated to 16 NGINX containers.

During the power measurement process, we could record additional data about the availability
and the scalability of the containers. We validated this data with a different setup, in which the
transaction time was not specified. In this way, we could see which configuration was the fastest.
Because of the large amount of data, we only show the results for 64,000 hits on 1 to 16 containers
produced by 16 users set on each container. The collected data can be found in Figures 7–10.

Figure 7. Elapsed time, hitting 1 NGINX container to 16 NGINX containers with 64,000 overall hits.
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Figure 8. Transaction rate, hitting 1 NGINX container to 16 NGINX containers with 64,000 overall hits.

Figure 9. Concurrency of the webservers/containers (average number of simultaneous connections, a
number which rises as server performance decreases).

Figure 10. Power consumption of containers with equal load.
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All results shown before were validated via the second UDOO and on a small cluster composed
of UDOOs. The raw data results can be found in our GitLab repository [27].

4. Analysis of the Results

First, prior to measurements, we expected that two containers with x hits each per minute would
consume twice the energy of one container with x hits per minute, since containers should guarantee
that they are independent of each other until it is explicitly requested. It should be mentioned that the
power consumption of our containers in idle mode completely faded within the energetic white noise.
This expectation is supported by the number of processes that each container starts (one process for
the daemon entry in the Docker daemon and one for the link between host ports and container ports).
Additionally, there can be one process for each process running inside the container (e.g., a script).
However, for example, if we compare the result of Figure 10 with one container handling 16 users
(16,000 hits) and four containers handling 16 users each (16,000 hits per container), the difference is not
400%, but only 140%. We get similar results when we look at the load balancing between containers.
As the measuring results of Figures 3–6 show, the difference between one container and 16 containers
with equally shared hits (16 users shared between 16 containers) is only 0.1 W at most, which means
only 16% more power per service than before. Furthermore, in relation to Figure 9, the transaction rate
doubles and the longest average transaction took 0.0466 s instead of 0.871 s (see replication package
file measurement_test_series_1.xlsx). Therefore, we recommend scaling web services as soon as possible
in order to guarantee the availability of the web service without consuming too much energy, even if
they are used to capacity. Where these energy savings result from cannot be answered at this point;
however, we assume that they result from the layer resolution of Docker. Since resources such as the
network hardware are normally allocated to every container, the energy costs for one container cannot
be half the costs of two containers. It is worthwhile to mention that since the amount of data used in
the experiment is very small, no point could be determined at which the server/container could no
longer handle the requests (since load was only generated by one system). If we increase the amount
of data downloaded per access (for example, dynamic web pages), we get an upper limit for requests
per container.

Related to the values in Figures 7–9, it is possible to find the optimal point of creating a replica
of a service in order to scale it without consuming much more energy. The problem is that this point
cannot be found in general, because it depends on the container that is running. Moreover, it depends
on the cluster management tool that is used and on its replica controller, because in contrast to our
test, every replica uses the same port, but is balanced via the replica controller, which consumes
further energy (we simulated this controller manually). The aforementioned optimal point of creating
another container could be found by observing the energy consumption behavior related to the
concurrency value of Figure 9 and the limit of requests per container (see above). In comparison
to cluster management tools such as Kubernetes, an autoscaler based on this consideration would
likely save more energy than classic autoscalers, which only observe the average CPU utilization of
the service to match a user-specified limit and, thus, periodically adjust the number of replicas [28].
It should be possible to create an autoscaler that scales with regard to CPU utilization and energy
consumption. Since the energy consumption is dependent on the CPU utilization, the controller
should create replicas even before they are really needed, without spending too much energy and CPU
resources at the same time. As shown in [29], there is a linear connection between CPU consumption
and power consumption. However, since reading the CPU consumption simultaneously influences the
low power values in our test, we did not find a satisfying method to collect the CPU data in parallel to
our tests.

5. Conclusions and Future Work

Looking at the results of our experiments in summary, it can be clearly said that even if the
difference between a single web-server container and scaling to several web-server containers seems
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small, there is potential for saving energy and simultaneously increasing reliability and accessibility.
As mentioned in Section 4, in order to use this potential, the cluster management tools have to find the
perfect point of scaling a service in order to save energy. It is important to create more comprehensive
test scenarios with the aim of using them to generate realistic training data. In the future, we will
work towards such an intelligent cluster manager. The first step is to generate a simulation tool for the
exact determination of the energy that can be saved. Secondly, this tool will be applied to the different
test scenarios.

As it turned out in the course of the experiment, the CPU and RAM consumption as well as
the power consumption of web-server containers are exact images of native web servers. If this also
applies to all other scenarios and different software (for example, databases), this knowledge could
be used to extend the abovementioned simulation tool in such a way that complex network systems
can be modeled and simulated. It would be possible to make a precise statement in advance about
the resource consumption of entire network systems and adapt and design server farms/clusters
accordingly. Using the criteria defined in [14], the method proposed here may further be used to
develop an awarding procedure for environmental labels for containerization.

In future experiments, we would like to give an overview of different container software regarding
their power consumption, as mentioned before during the test for the different power consumptions
of Rocket, Docker, and native NGINX. We are currently preparing test environments for examining
the various network techniques of container software. Here, we would like to show the energetic
differences of the implementation possibilities of software-defined networks (e.g., bridge networks
and Macvlan networks) in container software. All in all, this subject area offers sufficient potential to
continue research, since the increasing amount of collected data and therefore the increasing number
of servers leads to higher energy consumption through data centers.
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