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A B S T R A C T   

Species distribution models (SDMs) are key tools in biodiversity and conservation, but assessing their reliability 
in unsampled locations is difficult, especially where there are sampling biases. We present a spatially-explicit 
sensitivity analysis for SDMs – SDM profiling – which assesses the leverage that unsampled locations have on 
the overall model by exploring the interaction between the effect on the variable response curves and the 
prevalence of the affected environmental conditions. The method adds a ‘pseudo-presence’ and ‘pseudo-absence’ 
to unsampled locations, re-running the SDM for each, and measuring the difference between the probability 
surfaces of the original and new SDMs. When the standardised difference values are plotted against each other (a 
‘profile plot’), each point’s location can be summarized by four leverage measures, calculated as the distances to 
each corner. We explore several applications: visualization of model certainty; identification of optimal new 
sampling locations and redundant existing locations; and flagging potentially erroneous occurrence records.   

1. Introduction 

Knowledge of species’ distributions is key to successful conservation 
measures, but in nearly all cases species are known from incomplete, and 
often spatially-biased, observations. Consequently, species distribution 
models (SDMs) have become key tools in biodiversity monitoring and 
conservation planning (Guisan et al., 2013). They allow for a set of 
presence only, presence/pseudo-absence or presence/absence data 
(hereafter, occurrence data) to be used to infer a species’ distribution 
across the remainder of the unsampled region (Elith and Leathwick, 
2009). Such outputs may then be used for a wide range of conservation 
applications, such as tracking changes in the distribution of target spe
cies to identify increasing or decreasing trends (e.g. Brotons et al., 
2007), projecting potential future range-shifts (e.g. Elith et al., 2010), or 
to identify critical conservation areas essential for species persistence 
and reintroductions, or the protection of biodiversity (e.g. Kremen et al., 
2008; Riaz et al., 2020). 

For SDMs to be used effectively, it is therefore essential that such 

model outputs are accurate representations of the true distributions. The 
accuracies of SDMs are dependant not only upon the sampling effort (the 
quantity of occurrence data) used to generate the models (Aizpurua 
et al., 2015; Valavi et al., 2021), but also the spatial configuration of 
those sampling points (Kramer-Schadt et al., 2013; Syfert et al., 2013), 
particularly for presence-pseudoabsence models (Barbet-Massin et al., 
2012; Phillips et al., 2009). As there is likely to be considerable sample 
selection bias in occurrence data, any SDM therefore risks conflating 
modelling species distribution with modelling this sampling bias (Beck 
et al., 2014; Phillips et al., 2009; Ploton et al., 2020; Radosavljevic and 
Anderson, 2014). 

Furthermore, SDMs are generally evaluated through metrics sum
marising their accuracy against a set of validation data set-aside from 
the modelling procedure (Fielding and Bell, 1997), ensuring maximum 
fit to those locations with many data. This can be especially problematic 
if the validation data have the same spatial and environmental biases as 
the modelling data (Bahn and McGill, 2013; Leroy et al., 2018), such 
that a high level of accuracy to a small area in geographical or 
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environmental space is assumed to apply to all areas beyond those 
bounds (Charney et al., 2021). Validation data can be carefully struc
tured or filtered to minimize the influence of spatial biases as far as 
possible (e.g. Boria et al., 2014; Hallman and Robinson, 2020; Kra
mer-Schadt et al., 2013; Roberts et al., 2017), but any selection is still 
limited by where available samples are located. Although there is some 
movement towards producing maps of model uncertainty (Beale and 
Lennon, 2012; Rocchini et al., 2011; Swanson et al., 2013) estimating 
accuracy in the model outputs in a spatially-explicit manner is still 
challenging. 

Here we develop such a method for evaluating SDMs, which we call 
SDM profiling, that highlights key locations with the potential to affect 
model predictions should further data be collected. It does this by 
calculating the leverage that unsampled areas would have on the overall 
model predictions (rather than simply the effect on the response curves 
themselves) if they were to be sampled. We first describe the SDM 
profiling procedure in detail. We then show that the values generated for 
each unsampled cell provide a meaningful estimate of its likely effect on 
our model predictions using simulated species distributions. Finally, 
using simulated species and data for a freshwater gastropod from a long- 
term monitoring scheme, we highlight several potential applications for 
SDM profiling, including as a tool for visualising areas of high and low 
model certainty, selecting sites for collecting further data, optimising 
monitoring schemes and flagging potentially erroneous occurrence 
records. 

2. Materials and methods 

2.1. The SDM profiling procedure 

The basic assumption of SDM profiling is that each cell (sampled or 
unsampled) can be assigned to one of only two potential states: presence 

or absence. Thus, we can explore the effect of the cell on an SDM by 
comparing the predicted probability of occurrence map when the cell is 
included in the analysis to a probability of occurrence map produced 
when the cell is not included in the analysis. For example, we can 
‘virtually’ sample an unsampled cell by including it in the SDM training 
data in each of its two possible states, once when the cell is assumed to 
be a presence and once when assumed to be an absence, to generate two 
new probability of occurrence maps (Fig. 1). These two measures of 
change can be standardized and plotted against each other in a ‘profile 
plot’. The location of the cell in this plot relative to other cells allows the 
quantification of the information leverage of each cell for both possible 
states. 

The method incorporates not only information on the change to the 
response curves of the environmental variables if a cell were to be 
sampled, but also the prevalence of those conditions within the land
scape (Ewers et al., 2010). It therefore differs fundamentally from 
methods that only examine which unsampled locations would cause the 
largest changes to the response curves, such as traditional statistical 
leverage or influence measurements like the Cook’s distance in a 
generalized-linear model. For example, a new sampling location might 
cause a very large change in predicted probability of occurrence in a 
particular portion of an environmental gradient. If, however, a very 
small portion of the landscape possess those environmental conditions 
then the effect on the overall accuracy of our predictions will be small. 

Since SDM profiling always compares a new probability of occur
rence map to an original one, it can be applied to any species for which 
we have some initial occurrence data that can be used to create a base 
SDM. As the procedure directly compares the probability of occurrence 
values generated by multiple SDMs it is therefore advisable to build 
models using true presence-absence data, where detectability issues are 
accounted for, rather than presence only models that may predict only 
relative likelihoods (Guillera-Arroita et al., 2015). 

Fig. 1. A flow of the SDM profiling procedure. We start with six sampled locations which we model against two environmental predictors (column 1). We then add a 
new ‘sampling’ point (column 2) where we place a virtual presence (top row) or a virtual absence (bottom row). We have therefore ‘sampled’ a new area of 
environmental space for modelling (column 3), which in turn leads to different response curves for environmental predictor 2 in the model (column 4). The models 
are used to predict probability of occurrence across the area (column 5) and the differences for all cells calculated between the maps created with and without the 
new ‘sampling’ point. The summed difference when the ‘sampling’ point was a presence (DIFF1) and an absence (DIFF0) are then plotted against each other in a 
profile plot, and the procedure repeated for all other unsampled cells. 
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To start the procedure we first use the initial occurrence data to fit an 
SDM and create the base probability of occurrence map to which all 
other generated maps will be compared. At this stage we have for each 
cell j (from a total of J cells in the map), the predicted probability of 
occurrence according to the base SDM (hereafter BASEj). We then 
generate a list of all the K cells we wish to profile (a subset of J). For a 
given cell k (in K) we set its state to presence and re-run the SDM to 
produce a new probability of occurrence for each cell (NEW1,k,j). We 
then repeat this procedure for the same cell k, while setting its state as 
absence to produce a new probability of occurrence for each cell j 
(NEW0,k,j). 

For each cell j we calculate the absolute deviation from the proba
bility of occurrence in the base SDM with the new probability of 
occurrence when cell k is changed to a presence or absence: 

DEV1,k,j =
⃒
⃒NEW1,k,j − BASEj

⃒
⃒ (1)  

DEV0,k,j =
⃒
⃒NEW0,k,j − BASEj

⃒
⃒ (2) 

Then, for each cell k, the DEV1,k,j and DEV0,k,j are summed over all j 
cells to represent the total change in probability of occurrence across all 
cells when cell k is made a presence or an absence respectively. Next, the 
maximum and minimum deviation across all cells are calculated: 

Δmax = maxk

(
∑J

j=1
DEV0,k,j,

∑J

j=1
DEV1,k,j

)

(3)  

Δmin = mink

(
∑J

j=1
DEV0,k,j,

∑J

j=1
DEV1,k,j

)

(4) 

Finally, for each focal cell k, the total deviation is standardized be
tween 0 and 1 by the maximum and minimum deviations to calculate the 
total change in probability of occurrence when assumed presence or 
absence: 

DIFF1,k =

∑J
j=1DEV1,k,j − Δmin

Δmax − Δmin
(5)  

DIFF0,k =

∑J
j=1DEV0,k,j − Δmin

Δmax − Δmin
(6)  

2.2. The ‘profile plot’ and the four measures of leverage 

When repeated for all K cells we can then plot the standardised DIFF1, 

k and DIFF0,k values against each other in a ‘profile plot’ (Fig. 2). The 
position of cell k in this plot is therefore an indication of the total in
formation leverage that cell would have on the model if it was sampled 

and the species was found to occur there or not. 
We recognise four leverage measures that can be derived from the 

plot relating to the proximity to each of the four corners. In all cases we 
calculate proximity as √2 minus the Euclidean distance to the corner, 
such that the largest leverage values for a given corner indicate the 
closest points. These four measures are heuristically useful, even though 
they overspecify the data; once any three are known, the location of any 
point could be triangulated, making the fourth variable redundant. 
Indeed, the four measures can be categorised along two axes. 

2.2.1. Leverage strength 
The first axis runs from corner A to B in Fig. 2 and relates category to 

‘leverage strength’. The further along this axis towards corner A the 
stronger the overall leverage of that cell.  

A Dual-leverage— Cells in this corner indicate locations that have high 
leverage whether the species is present or absent. This may occur for 
example for cells in poorly sampled and/or prevalent environments 
where small changes in the modelled responses can result in large 
sum changes in probability across the landscape. We cannot there
fore make a-priori judgements on the species’ likely state in that cell, 
but know that the cell has important consequences for our model 
predictions. Cells with high dual-leverage values are therefore good 
candidates for future sampling.  

B Redundancy— For cells close to this corner, although leverage is 
similar whether made a presence or absence, the change in model 
predictions are small in both cases and so they are not likely to be 
providing information not already present in the model. This may 
occur if the environmental conditions are rare in the landscape or 
already well sampled. Cells with high redundancy values would 
therefore be inefficient selections for future sampling. 

2.2.2. Leverage symmetry 
The second axis runs for corner C to D and relates category to 

‘leverage symmetry’. Location along this axis indicates that leverage is 
stronger for one state (i.e. either presence or absence) than the other.  

C Presence-leverage— Cells near this corner indicate that there is a large 
change in the predicted probability of occurrence if the species were 
to occur in that cell, but conversely the predicted probability of 
occurrence remains largely unchanged when the cell is made an 
absence. It is therefore an unlikely site for the occurrence of the 
species if those environmental conditions have been well sampled. 
For example, if modelling a species that is confined only to wood
land, adding an absence to a grassland cell would not greatly affect 
our predictions, but adding a presence to that cell may lead to 

Fig. 2. A profile plot showing the overall standardised change in modelled probabilities of occurrence when each cell is made a presence (DIFF1) and an absence 
(DIFF0). We identify four measures of information leverage calculated as the distance to each plot corner: (A) dual-leverage (green), (B) redundancy (purple), (C) 
presence-leverage (blue) and (D) absence-leverage (red). The four measures may provide valuable information for different applications (see boxes). 
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increases in suitability across all grassland cells, especially if grass
land has hitherto been poorly sampled. Therefore, sampling at such a 
site may further confirm what the model currently predicts as ab
sences if those conditions are well-sampled, but greatly change the 
model if those conditions were poorly sampled and modelled pref
erence is based on relatively little data. The incorrect assignment of a 
presence in these cells has the potential to significantly mislead 
predictions.  

D Absence-leverage— Cells in the opposite corner indicate a small 
leverage when a presence is added, but a large change in the model 
with the cell is made an absence. Again, this may indicate that the 
cell is deemed likely to be a presence, for example a woodland cell in 
the previous example. Here, the incorrect assignment of an absence 
has the potential to significantly mislead predictions. 

It is also worth noting that the degree of change a cell’s sampling will 
have on the model is a function of two factors. First, leverage is a 
function of the spatial and environmental information that the cell is 
providing for the model, so that a cell located in environmental condi
tions dissimilar from those already sampled will likely have higher 
leverage values than a cell located within a heavily-sampled region of 
environmental space. Second, leverage is also dependant upon the 
prevalence of those environmental conditions within the landscape. For 
example, the altered model may double the probability of occurrence for 
a certain environmental condition but if that condition is scarce within 
the landscape the overall change in the probability of occurrence across 
all cells will be small. Conversely, only a slight increase in probability of 
occurrence for those conditions prevalent in the landscape may lead to a 
large overall change. This highlights the general importance in spatial 
ecology that the effect sizes themselves may not be informative until 
mapped and aggregated across the landscape (Ewers et al., 2010), as 
well as explaining why simply selecting cells based on maximising the 
sampled environmental space is also likely to be an inefficient solution. 

2.3. Testing the relevance of the four leverage measures 

We illustrate the relevance of a celĺs position in the profile plot, and 
the four leverage measures, through simulations (Fig. 3). We created a 
series of virtual species and generated SDMs from initially a small 
number of randomly assigned cells. Further cells were subsequently 
added iteratively by selecting cells closest to the respective corners of 
the profile plot and the change in accuracy of the SDM predictions 
calculated. By utilising virtual species we were able to assess the true 
accuracy of each SDM as we increased sampling effort. Consistent dif
ferences in the rate of increase in model accuracy for species of different 
prevalences indicate if our leverage measures do indeed reflect different 
informational content for unsampled cells. 

All simulations were carried out in R 3.4.3 (R Core Team, 2020). 
Environmental and species layers were generated using the gstat pack
age (Gräler et al., 2016; Pebesma, 2004), and SDMs were generated 
using the randomForest package (Liaw and Wiener, 2002), although 
SDM profiling could be applied to any SDM algorithm that outputs 
probability of occurrence values. An R package which contains functions 
for carrying out SDM profiling and plotting the results can be installed 
from https://github.com/charliem2003/sdmProfiling. The package also 
contains functions for creating simulated species and sets of environ
mental variables that follows the described methodology. 

2.3.1. Creation of virtual environmental variables and species distributions 
Environmental variables— Environmental variables were generated in 

groups of five across landscapes of 50 × 50 cells. First a surface was 
created using an unconditional Gaussian simulation to create a random 
field from a spherical variogram using a consistent, but arbitrary, sill 
value of 1.5. Spatial autocorrelation, controlled using the range 
parameter, was drawn from an exponential distribution (the exponential 
of a value drawn randomly between 1 and 6). Larger values result in 
higher levels of spatial autocorrelation. Four further environmental 

Fig. 3. Outline of the simulation procedure for a set of species with six prevalence values. This procedure was repeated 30 times each where species had aggregated 
or dispersed distributions. 
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variables were then created based upon the first by subsampling 50% of 
the cells of the first variable. The subsampled cells were then used as 
input for a new Gaussian simulation with new spatial autocorrelation 
values, randomly assigned from the same distribution. Finally, values for 
all five variables were standardised between 0 and 1. This resulted in a 
group of five closely-related variables, but each with different levels of 
spatial autocorrelation. We repeated this procedure a further three times 
to produce four groups of five environmental variables. 

Only the first variable from three groups was used to generate the 
virtual species distributions themselves (see below), but the SDMs were 
trained with all twenty environmental variables as predictors. In real- 
world cases we generally don’t know a-priori which environmental 
variables are important in determining the distribution of the species in 
question, and so usually there will be unimportant variables that are 
erroneously included. Our approach here means that there is ample 
scope for an SDM to incorrectly identify the important predictors and for 
this to lead to an inefficient accumulation of new sampling points. 

Sampling bias— A further independent environmental variable with 
very high spatial autocorrelation (Range = 500) was created that ap
proximates a typical spatial bias in sampling probability. We might 
expect similar real-world sampling probability surfaces (e.g. Beck et al., 
2014) due to, for example, higher sampling effort around cities and 
universities (the “botanist effect”; Moerman and Estabrook, 2006). This 
layer was generated independently of any environmental or species 
layer. 

Virtual species— To generate a virtual species for a given set of 
environmental variables, we multiplied the first variable of three of the 
environmental groups. We subsampled 50% of these cells and used them 
as input to generate a new surface layer in the same manner as for the 
environmental variables, using an unconditional Gaussian simulation to 
create a random field from a spherical variogram with a sill value of 1. 
The surface was then converted to a presence-absence distribution by 
selecting the number of highest value cells that equalled the desired 
proportion of occupied cells. The procedure was repeated for six species 
prevalence values for a given set of environmental variables, with pro
portions of 0.025, 0.05, 0.1, 0.25, 0.5 and 0.9 occupied cells so that for a 
given run all six species had similar underlying distributions but 
different prevalences. 

In order to check that the species had appropriate distribution 
characteristics, we calculated the area-weighted mean class aggregation 
index value (He et al., 2000). As aggregation indices are dependant upon 
prevalence we only carried this out for prevalence of 0.1. Species were 
assigned as having an aggregated distribution if the aggregated index 
value fell between 80 and 90, and as having a dispersed distribution if 
the aggregated index value fell between 30 and 40. Although the 
thresholds are somewhat arbitrary, they produced subjectively very 
different distribution patterns (see examples in Fig. S1 in Supplementary 
Material). If the species could not be assigned to either then the species 
and environmental variables were discarded and the procedure 
restarted. 

Initial sampling cells— For each species we selected 25 cells in order to 
build the initial SDMs. We assumed perfect detection so that models 
were built with presence-absence information. Cells were drawn from 
the sampling bias layer by generating a probability value for each cell 
from a uniform distribution between 0 and 1. Cells where the sampling 
bias value exceeded the probability value were assigned as ‘sampled’. 
We then drew 25 of the ‘sampled’ cells at random, ensuring a minimum 
of three presences or absences. 

Therefore, our knowledge of the species distribution starts from a 
spatially-biased position, with no correlation to environmental variables 
or the species distribution, approximating spatial biases that predomi
nate in biological databases. We also present results in the supplemen
tary material where the initial 25 cells were sampled randomly with no 
spatial bias. 

2.3.2. Sampling procedure 
For a given species within a set of environmental variables, we first 

generated an initial SDM using the 25 starting sampling cells as 
presence-absences. All SDMs were built using random forests with 2500 
trees. Although many other algorithms are available for building SDMs, 
random forest models are very rapid to compute, which is important as 
our simulations required fitting some 123,651,480 models. However, 
the procedure should be robust to the modelling approach used if other 
algorithms are preferred. SDMs were built using all 20 environmental 
variables as well as the sampling bias layer as independent variables, 
including quadratic terms. As species distributions were built using only 
three environmental variables multiplied, we were therefore providing 
models that were greatly more complex than necessary and of high risk 
of overfitting if provided with spatially or environmentally-biased 
training data. Accuracy of the SDM prediction was then evaluated 
against the true species distribution through the true skills statistics 
(TSS) after applying a presence-absence threshold of 0.5. Accuracy was 
also assessed using the Kappa statistic and AUC and presented in the 
supplementary material. 

Further sampling sites were added with increasing increments of 
sampling effort. Initially five further sampling cells were added, fol
lowed by a further 10 cells, 15 cells, to 95 cells in 5 cell increments for a 
total of 19 iterations. Therefore, sampling effort ranged from 25 to 975 
cells. 

For each iteration, a profile plot was generated for all unsampled 
cells. Additional sampling cells were selected based upon the four 
leverage measures generated from the profile plot: a) the highest dual- 
leverage values; b) the highest redundancy values; c) the highest 
presence-leverage values; d) and the highest absence-leverage values. As 
a null model, we also accumulated additional sampling cells based upon 
the same spatially-biased layer used for assigning the initial 25 sampled 
cells, without consideration of the species’ potential distribution 
through SDMs, as is often typical in non species-specific sampling 
schemes or ad-hoc recording. In all cases, at each iteration a new SDM 
was generated and its accuracy assessed against the true distribution. 

We replicated the procedure 30 times, generating 30 new sets of 
environmental variables for each species type (aggregated and 
dispersed) and 6 species prevalences for each environmental variable 
set. The success of the five approaches for accumulating sample cells was 
assessed as the increase in accuracy as sampling effort increased, aver
aged across the 30 replicates for each species. We also explored the 
relationship between the probability of occurrence of cells against the 
leverage values once the cells were profiled for a representative species. 
If correlations are high then it may indicate that there is little additional 
information gained from the profiling procedure. However, even where 
probability of occurrence and leverage are correlated, if there is varia
tion in leverage values for a given probability of occurrence, then 
selecting cells based on probability of occurrence alone would poten
tially result in selecting cells with relatively small leverage values. 

We explored several potential applications for SDM profiling, 
including visualization of model certainty in RGB colour space, identi
fication of new sampling locations and redundant existing locations and 
the flagging potentially erroneous occurrence records. Applications 
were illustrated using either virtual species generated using the same 
procedure as above (the example species is the same shown in Fig. 6), 
where the initial sampling data comes from 25 sampling points arranged 
across a regular grid, or a real-world scenario of an existing, freshwater 
monitoring scheme, the Long-term Ecological Research (LTER; Mirtl 
et al., 2018) site Rhine-Main-Observatory (RMO; Kuemmerlen et al., 
2016), focusing on data for a freshwater gastropod (Ancylus fluviatilis O. 
F. Müller, 1774). In this monitoring scheme, 21 existing sampling points 
were located along the main channel and a further 50 unsampled lo
cations were identified as potential additions for future monitoring. 
RMO data is publicly available from https://rmo.senckenberg.de/search 
/home.php. 
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3. Results 

When the profile values were plotted against the probability of oc
currences of the SDM profiled (Fig. 4), leverage symmetry (presence- 
and absence-leverage values), but not leverage strength (redundancy 
and dual-leverage values), were highly correlated with probability of 
occurrence. Cells with high presence-leverage values have low proba
bility of occurrence whereas cells with high absence-leverage have high 
probability of occurrence. There is some indication that those cells with 
the highest dual-leverage values have probability of occurrence values 
around 0.5, suggesting that the measure is focusing on cells of highest 
uncertainty, but importantly selecting sites on medium probability of 
occurrence alone gives little indication of their redundancy or dual- 
leverage value. 

Selecting new sampling locations based upon their leverage values 
greatly affected our ability to accurately predict a species’ distribution in 
consistent ways (Fig. 5), confirming the relevance of the profile plot. 
However, the identity of the most appropriate sampling method differed 

depending upon the prevalence of the species. 
In general, selecting points using redundancy (Fig. 5; purple lines), 

those points that result in little change to the SDM output when added, 
led to slow increases in accuracy, whereas selecting points based on 
dual-leverage (Fig. 5; green lines), those points that cause large change 
to the SDM output when added, generally led to rapid increases in ac
curacy, especially when adding to small numbers of sampled cells or for 
species with medium prevalences. Accumulating samples based only on 
a spatial bias independent of the species (Fig. 5; orange lines) was 
inefficient across all scenarios. For prevalent species, accumulating 
sampling points based on presence-leverage (low values for DIFF0; high 
values for DIFF1; Fig. 5: blue lines) led to rapid increases in accuracy, 
whereas for rare species (i.e. the majority of species on earth), accu
mulating sampling points based on absence-leverage (high values for 
DIFF0, low values for DIFF1; Fig. 5: red lines) led to rapid increases in 
accuracy. For example, selecting points for a rare species based upon 
absence-leverage can almost double accuracy compared to other 
methods, whereas selecting points based upon presence-leverage would 
lead to only half as much increase in accuracy (Fig. 5). We can see in 
Fig. 6 (first column) that using absence-leverage concentrates points on 
the few true presences, and so even though the selected points covers 
only a small proportion of the environmental space (second column) the 
model can accurately predict the edges of the species range. 

By contrast, selecting points for rare species through presence- 
leverage values identifies locations where there is high certainty of 
absence which are of little value to increasing model accuracy. Although 
a wide environmental space is sampled many cells need to be sampled 
before the environmental space dividing presences and absences has 
been adequately covered. 

Selecting points based on redundancy (low values for DIFF0; low 
values for DIFF1) accumulates points in a spatially-clustered manner, 
whereas selecting points based upon dual-leverage (high values for 
DIFF0; high values for DIFF1) samples widely across the entire landscape, 
roughly in proportion to prevalence and so provides a good compromise 
between absence- and presence leverage whilst performing well across 
all species prevalences (Fig. 5). 

4. Discussion 

We can envisage three main uses for SDM profiling, ranging from 
model visualisation to optimising sampling schemes and flagging 

Fig. 4. The relationship between the probability of occurrence predicted for 
unsampled cells from a random forest SDM against the values of the four 
leverage measures of the profile plot, which measures the overall change of the 
SDM predictions if those cells were to be sampled: presence-leverage (blue), 
dual-leverage (green), redundancy (purple) and absence-leverage (red). Dashed 
lines are best-fit loess smoothers. 

Fig. 5. The accuracy measured through the True Skills Statistic (TSS) for modelled distributions against sampling effort for six virtual species with prevalences of 
0.025, 0.05, 0.1, 0.25, 0.5 and 0.9 and two distribution types: aggregated (bottom row) and dispersed (top row). Sites were sequentially added using four measures of 
selection based upon SDM profiling: dual-leverage (green), redundancy (purple), presence-leverage (blue dashed), absence-leverage (red dashed) and a spatial bias 
independent of the species distribution (orange). The initial 25 cells were drawn from a biased sampling surface independent of the species distribution. Results from 
iterations where initial sample sites were randomly drawn are available in the Supplementary Material. Solid lines are the mean from 30 replicates and polygons the 
95% confidence interval. 
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suspicious points in existing datasets (e.g. occurrence records with 
geocoordinate issues or misidentifications). 

4.1. Visualisation of leverage and spatial biases 

If we calculate leverage for every cell, we can plot the four leverage 

distances individually as spatially-explicit maps (Fig. 7). Alternatively, 
as there are only three degrees of freedom (see 2.2, above), we can 
visualise all leverages simultaneously by mapping three of the leverage 
values on to three axes using a red-green-blue (RGB) plot. In the example 
in Fig. 7, values for absence-leverage determine the values for red, dual- 
leverage the values for green and blue is determined by presence- 

Fig. 6. A snapshot after 13 iterations of accumulating sampling points (480 points) using SDM profiling for a virtual species with an aggregated distribution and 
medium prevalence (0.25) from Fig. 4. Additional points were selected based upon the four leverage measures from the profile plot: dual-leverage (green), 
redundancy (purple), presence-leverage (blue), absence-leverage (red), and in a spatially-biased manner independent of the species’ distribution (orange). In the 1st 
column, the predicted distribution (dark green = correctly predicted occurrences; light green = incorrectly predicted occurrences) after 480 points have been selected 
(orange points: absence; red points: presence) overlaid on to the true distribution (light grey). 2nd column) the environmental space visualised in a PCA biplot for the 
total area (black polygon) and that sampled by the selected point (red polygon). Grey points are the locations of all cells (light grey: absence; dark grey: presence), 
and coloured cells those sampled by each strategy (orange: absence; red: presence). 3rd column) A heat map of the profile plot. The density of points goes from dark 
blue (low density) to dark red (highest density). 4th column). The accuracy measured through the True Skills Statistic (TSS; ± 95% c.i.) as sampling effort is increased 
in log-space. Coloured dashed lines represent accuracy increases across all iterations. Dashed black lines is the linear increase in accuracy in log-space from the 
accuracy with 25 sampling points and with 975 sampling points averaged across all species and methods, and serves as a visual aid. 
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leverage. Now areas in blue are likely absences (high presence- 
leverage), areas in red likely presences (high absence-leverage), areas 
in purple of little importance for model accuracy (high redundancy), and 
light green indicates high dual-leverage. 

4.2. Evaluating and improving existing sampling schemes 

Existing monitoring schemes have limited sampling capacity due to 
financial and methodological constraints. Therefore producing SDMs for 
target species can be an important analytical tool in conservation and 
management where complete sampling of all sites is not feasible 
(Domisch et al., 2015; Kuemmerlen et al., 2016, 2015). In most cases, 
the location of sampling sites is based on an equally-spaced, or on an 
environmentally-stratified design with some degree of randomness 
within those constraints. All these cases are insensitive to the species 
perspective of its environment, and to the model’s ability to distinguish 
between presences and absences. Thus, it is important to develop tools 
that will optimize sampling sites selection for existing or new moni
toring schemes (Guisan et al., 2006). 

As the simulations show in the previous section, SDM profiling may 
be used to select new sampling sites that will likely lead to the largest 
increases in model accuracy for the minimum increase in sampling effort 
(Figs 5, 6). Interestingly, the simulations showed that, contrary to ex
pectations, selecting new sites so as to cover a broad range of environ
mental conditions (e.g. an environmentally-stratified design) is 

generally inefficient when monitoring a single species, although such a 
scheme may be advantageous for assemblage monitoring where species 
have differing environmental preferences. Instead concentrating on 
selecting those sites that are at the environmental boundaries between 
areas of presence and absence is more likely to result in higher accuracy. 

The SDM profiling approach differs fundamentally from SDM tar
geted approaches (Guisan et al., 2006), that base further sampling only 
on the output of the SDM using sampled locations. Such approaches, 
such as adaptive niche-based sampling developed for rare species 
(Chiffard et al., 2020), typically prioritise detecting new presences by 
focussing on further sampling in unsampled locations with predicted 
high probability of occurrences, or targeting areas of environmental 
space that remain unsampled. In contrast, by assessing model leverage, 
SDM profiling examines the interactions between unsampled environ
mental space, the prevalence of that environmental space in the land
scape, and the effect sizes of the difference between the unsampled 
environmental space from sampled environmental space estimated from 
the response curves recovered from the SDM. Therefore we are priori
tising sampling that will increase the accuracy of model predictions 
rather than necessarily discovering new locations of presences (or 
absences). 

We illustrate this potential using the monitoring data of the fresh
water gastropod Ancylus fluviatilis in the RMO dataset. The scheme is to 
be extended to higher order streams and 50 candidate sites were drawn 
up (Fig. 8). By applying SDM profiling to the candidate sites we can 

Fig. 7. We can generate spatially-explicit maps for each leverage measure (the four individual maps surrounding the profile plot), or all four measures can be 
visualised as an RGB plot (in this example red = absence-leverage, green = dual-leverage, and blue = presence-leverage). 

Fig. 8. Selecting new monitoring sites on the LTER site Rhine-Main-Observatory for the freshwater gastropod Ancylus fluviatilis. 50 candidate sites were identified 
(orange points) to supplement 21 existing sites (red points). After SDM profiling on the 50 sites, new sites can be selected as those with the highest dual-leverage 
values (green), or alternatively we can eliminate candidates with high redundancy-values (purple). 
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select those that have a large, but unknown, potential effect on our 
knowledge of the species distribution as the sites with the highest dual- 
leverage values. Alternatively, we can choose to omit sites with highest 
redundancy values that will provide the least new information. 

As well as evaluation of unsampled cells, we can similarly assess the 
leverage of our sampled sites, for example if we wanted to reallocate 
effort from existing monitoring sites. In this case we remove each sample 

point in turn and re-run our SDM, calculating the deviance between the 
new and base SDMs and standardising each site relative to the largest 
deviance value. Sites where models are very similar when built with and 
without that data point (i.e. high redundancy values) are therefore ones 
with little leverage on our model and so could be removed entirely with 
small impacts on model accuracy. In the example in Fig. 9 we remove 5 
points iteratively by repeating the leverage analysis each time the point 
with the lowest deviance is removed. 

4.3. Flagging suspicious records 

Similarly, high deviance after removing a point might indicate 
incorrect status for that point. This can be a false absence due to, for 
example, insufficient sampling effort, or alternatively a false presence, 
which can occur in ad-hoc sampling records, such as that found in 
mixed-origin datasets such as the Global Biodiversity Information Fa
cility (GBIF; http://www.gbif.org). Any dataset may contain erroneous 
records, for example due to misidentification, a record of a transient 
individual, or an error in the assigned coordinates (Maldonado et al., 
2015; Yesson et al., 2007), and much effort is now exerted in finding and 
removing such cases (Chapman et al., 2020; Zizka et al., 2020). A pro
cedure such as that described above for assessing existing monitoring 
sites, might provide an automated method for flagging up potential er
rors in datasets, or points that have large influence that can then be 
expert-assessed. 

Returning to the simulated monitoring scheme from Fig. 7 we change 
one of the absences to a false presence (Fig. 10, top row) and then 
separately one of the presences to a false absence (Fig. 10, bottom row). 
Similar to the previous section we then measure the total deviance be
tween an SDM built using all 20 points (including the false record in 
each case), and then an SDM where each point was removed in turn. In 
both cases removing the false record led to the largest total deviance in 
the predicted probabilities between the new and original SDMs. 

5. Conclusions 

We present a new tool for analysing species distribution models in a 
spatially-explicit manner, SDM profiling. We take advantage of the fact 
that an unsampled cell can only be in one of two potential states, pres
ence or absence. We can therefore measure the leverage that a cell has 
on a SDM through the change in predicted probability of occurrences 

Fig. 9. Example of iterative removal of monitoring sites at the Rhine-Main- 
Observatory for the freshwater gastropod Ancylus fluviatilis. Each site is 
removed and the deviance measured between the SDMs with and without the 
site (orange circles). A small deviance indicates little effect of the monitoring 
site. Five sites are removed sequentially by removing the site with the smallest 
deviance in each iteration. 

Fig. 10. Flagging of false records using SDM profiling. In each case a false 
presence (top row) and a false absence (bottom row) were added to the simu
lated monitoring data (points with black outline). Then we measure the 
standardised deviance (left column; background shows the true species distri
bution in grey) between an SDM using all points (centre column) and an SDM 
removing each point in turn. In both cases removing the false record led to the 
largest changes in SDM predictions (right column). 
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should that cell be sampled in the future and the species be found to 
occur there or not. As well as providing a visual aid for identifying areas 
of high and low certainty in our model predictions, we believe SDM 
profiling may also provide valuable information for designing and 
refining monitoring schemes. 

Of course, there are constraints on processing time from the number 
of sampling points and the extent of the modelling area as the number of 
unsampled cells increases, as well as the complexity of the modelling 
procedure. For example, SDM profiling of a 100 × 100 cell grid, with 25 
sampled points (i.e. two new SDMs will be created for 9975 unsampled 
cells), 10 environmental variables and using 500 trees to build the 
random forest models requires 22 mins 40 secs (Intel Core i7–8750H 
2.20 GHz and 32GB RAM), but we recommend in such cases to run SDM 
profiling across multiple cores using the parallelisation option in the 
provided R package which will reduce the processing time considerably 
(4 mins 58 secs across 8 cores on the same machine). Of course, con
straints on processing time may also be alleviated by only carrying out 
the profiling for a subset of cells that are of interest (e.g. Fig. 8) or 
modelling decisions, such as reducing the number of environmental 
variables, model complexity or algorithm. 

Although SDM profiling will inevitably increase the time used to 
create SDMs, we believe it can provide the spatially-explicit evaluation 
of model outputs that is currently lacking from the majority of work
flows. To maximise the usage of limited funds, we also encourage the 
consideration of sampling and modelling strategies at the planning stage 
of any project, as part of an overall strategy to better predict species 
distribution patterns (Jeliazkov et al., 2022). We therefore hope that 
SDM profiling can become an important tool to for the adaptive opti
misation of monitoring and conservation projects. 
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