
Models’ details:

LSTM:
LSTM is a type of recurrent neural networks that has the ability to learn from long sequences of

data while remembering relevant information from past time steps. A typical LSTM layer in a deep

learning model consists of multiple LSTM cells. Each cell has four gates to control the flow of

information; input gate, output gate, forget gate and the cell state. These gates can learn which

data in a sequence is important to keep or throw away. By doing that, it can pass relevant

information down the long chain of sequences to make predictions [35]. Another similar, yet

simpler cell structure is called GRU. We experimented with both cell types in our model and chose

LSTM because it performed better. The architecture we used in our experiment is shown in (Figure

1). All the lab values will be input to the LSTM block to learn from the sequential data. Each LSTM

block include a LSTM layer, which has a "tanh" as a built-in activation function. Then comes a Batch

Normalization layer, which reduces the internal covariant shift and reduces the dependence of

gradients on the scale of the parameters or their initial values ensuring a more stable training. We

do not use a Dropout layer in our architecture because we already use batch normalization which

offer the same network stabilization without the risk of variance shift [36]. After the sequential

data pass through the layers, it will be concatenated with the demographic’s features. The

concatenated data will then go through a stack of fully connected layers ending with a last dense

layer that has a sigmoid activation function. During forward propagation, the output probabilities

will be compared to a threshold to produce the binary labels that are used to calculate the loss

and the other evaluation metrics. In (Table 1), we show the important hyperparameters used in

our architecture.

Table S1. The LSTM model hyperparameters.

Layer name Layer details

LSTM_1_1 no_cells= 50
drop_11 Rate= 0.2

LSTM_1_2 no_cells= 100

drop_12 Rate= 0.3
LSTM_1_3 no_cells= 100

drop_13 Rate= 0.3
Dense_2 no_cells = 40

Dense_3 no_cells = 140
DROP_3 Rate= 0.2

Learning rate 0.01

Figure S1. The LSTM model used in our experiments.

CNN
Convolutional neural network is a class of deep neural networks that is inspired by the visual

cortex in animals where individual neurons respond to only a specific part of the visual field called

receptive field [37]. Convolutional networks learn to optimize its kernels to extract information

from input data in a successive manner. CNNs have lots of applications in image classification [38],

text classification [2] and natural language processing [39]. Additionally, they proved to work well

on time series forecasting problems like in [27], outperforming LSTMs often in terms of total

training time in a more computationally efficient manner [28]. In our case we use a 1-Dimensional

multi-CNN where the kernels (filters) move along the time axis applying convolution operation on

all features. The kernel size defines how many time-steps one kernel covers at any point in time.

In (Figure 2), the network architecture used in our experiments is shown and in (Table 2) , the

important hyperparameters are stated.

Figure S2. The CNN model used in our experiments.

 Table S2. The CNN model hyperparameters.

Multi-CNN
The CNN architecture we developed takes two streams of the input sequences in parallel. Each

stream will be processed with different filters. This ensures that we capture short-term

dependencies in the sequences as well as long-term ones. Additionally, in each convolutional

block, the activation function is replaced with a modified version of the ReLU activation function

called LeakyReLU which performed better than ReLU with CNN. LeakyReLU helps overcome the

issue of the "dying ReLU", where the node keeps outputting an activation value of 0 when the

summed input to it is negative (it happens with large weights update) [40]. After the convolution

blocks, the network continues the same as the LSTM network with fully connected (dense) layers

as shown in (Figure 3). In (Table 3), the important hyperparameters for the network are stated.

Layer name Layer details
CONV_1_1 no_filters= 100, CNN kernel size=2

CONV_1_2 no_filters= 100, CNN kernel size=3
CONV_1_3 no_filters= 100, CNN kernel size=3

Dense_2 no_cells = 200
Dense_3 no_cells = 200

DROP_3 Rate= 0.2

Learning rate 0.0003

Figure S3. The multi-CNN model used in our experiments.

Table S3. The multi- CNN model hyperparameters.

Layer name Layer details
CONV_1_1 no_filters= 100, CNN kernel size=2

CONV_1_2 no_filters= 50, CNN kernel size=3
CONV_1_3 no_filters= 50, CNN kernel size=3

CONV_2_1 no_filters= 100, CNN kernel size=4
CONV_2_2 no_filters= 65, CNN kernel size=3

CONV_2_3 no_filters= 45, CNN kernel size=3

Dense_2 no_cells = 200
Dense_3 no_cells = 200

DROP_3 Rate= 0.2
Learning rate 0.0003

 TRANSFORMER
Transformers are a recent neural network architecture that were derived from the attention

mechanism first proposed in [29]. The mechanism was designed initially for translation tasks,

which was done using RNNs before. Transformers have the advantage that they can be very

efficiently parallelized. This allowed training excessively big models on huge datasets. For

example, the GPT-3 model has 175 billion parameters and was trained on 45 TB of text data.

Additionally, it is quite easy to switch from an existing RNN architecture to a transformer one

because inputs are of the same shape. Transformers typically use a collection of superimposed

sinusoidal functions to represent the position of words in NLP tasks. However, in time series

tasks, we need to attach the meaning of time to our input. One way is introduced by authors

in [30], where each input feature is represented as a linear component and a periodic

component according to the following equation:

𝑡2𝑣(τ)[𝑖] = {
𝜔𝑖𝜏 + 𝜑𝑖 , 𝑖 = 0

𝐹(𝜔𝑖𝜏 + 𝜑𝑖), 1 ≤ 𝑖 ≤ 𝑘
}

t2v(τ)[i] is the ith element of 𝑡2𝑣(𝜏)[𝑖] and (𝜏) is a scalar notion of time, e.g., days, hours,

etc. F is a periodic activation function, e.g., the sine function, and φi, ωi are learnable

parameters. The result at the end will be a learned vector representation of time steps that

will be concatenated with the input data before the attention layers. This model

architecture, according to our knowledge, was never used on lab values before. The model

hyperparameters we used in our experiments are shown in (Table 4). Each attention block

consists of multi-head self-attention, drop out, layer normalization and feed forward layer

(1D convolution). After the attention blocks, the architecture continues like the other

models.

Table S4. The Transformer model hyperparameters.

Layer name Layer details

TSTransformer time2vec_dim = 1, num_attention_heads=
2, head_size=128, num_layers=2,
dropout=0

Dense_2 no_cells = 50
Dense_3 no_cells = 100

DROP_3 Rate= 0.3

Learning rate 0.001

TCN
Temporal Convolutional Networks (TCNs) were first introduced in [31] for video-based action

segmentation. Not long after that, it was used for sequence modelling tasks like weather

prediction [41]. TCN differs from conventional CNN in two ways: First, TCN can take a sequence of

any length and output a sequence of the same length using zero padding. Second, TCN perform

causal convolution. This means that the output at time t is only convolved with samples that

occurred before t. One of the short comings of the causal convolution, is that the network can

look back in time with size linear in the depth of the network. This makes it hard to model long

sequences. To overcome this issue, the authors in [31] implemented a version of TCN with dilated

convolution that allowed the network to have a large receptive field and to extract long-term

patters. The dilated convolution operation F on element s of a sequence x ∈ Rn with a filter

f: 0, … , k − 1 → R is defined by:

𝑭(𝒔) = ∑ 𝒇(𝒊)

𝒌−𝟏

𝒊=𝟎

⋅ 𝒙𝒔−𝒅⋅𝒊

where k is the filter size, d is the dilation factor and (s − d) ⋅ i accounts for the direction of the

past. In (Figure 4), an example of dilated causal convolution with filter size k=3 and dilation

factor d=1,2,4 is shown. The receptive field can cover all values of the input sequence.

Figure S4. A dilated causal convolution (d=1,2,4, and k = 3).

In general, TCN networks have the advantage that they can be trained in parallel with less memory

unlike RNNs. Additionally, they support variable length inputs and can easily replace any existing

RNN network. In (Figure 8), the TCN architecture we have designed and experimented with is

shown.

Figure S5. The TCN model used in our experiments.

Table S5. The TCN model hyperparameters.

Table 3

LIGHTGBM
We wanted to include a non-deep learning algorithm to be compared with our DL solutions.

Therefore, we have picked LightGBM, which is a gradient boosting framework that uses tree -

based learning algorithm [34]. We have used the LightGBM python library’s implementation

of the LightGBM classifier [34]. We have trained the classifier on each of the lab values

separately as the classifier does not support the multi-label classification. Then, we tested

each trained model on its respected lab value test dataset. Finally, we have used micro

averaging to calculate the accuracy, precision, recall and F1 score of the whole dataset.

Layer name Layer details

LGBMClassifier learning_rate=0.9, max_depth=-6,
random_state=42

Evaluation Metrics

In our work, we are predicting the output binary vector of the future time step rather than the actual

numerical lab values. We have tried training the models as regression models predicting the actual

numerical values and minimizing the minimum squared error (MSE). Then, we converted the predicted

numerical output to binary vectors using the recommended ranges. However, we received better

results when we treated the models as multi-label, multi-class classifiers predicting the binary vectors

directly. Therefore, the evaluation metrics we used for such classification problems can be derived

from (Table 3), which is called the confusion matrix. It is used to evaluate the predictions of a binary

classifier by comparing how many outputs were predicted correctly or how many were predicted

wrongly to the total number of positive predictions (P) or negative predictions (N). Additionally, the

following evaluation metrics can be derived from the table as follow:

• 𝐵𝑖𝑛𝑎𝑟𝑦 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
𝑇𝑃+𝑇𝑁

𝑃+𝑁

• Precision (positive predictive rate)=
𝑇𝑃

𝑇𝑃+𝐹𝑃

• Recall (true positive rate)=
𝑇𝑃

𝑇𝑃+𝐹𝑁

• F1 score (harmonic mean)= 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Layer name Layer details

TCN_1_1 no_filters= 50, no_stacks= 2
TCN_1_2 no_filters= 100, no_stacks= 2

Dense_2 no_cells = 40
Dense_3 no_cells = 140

DROP_3 Rate= 0.2
Learning rate 0.001

