
Models’ details: 

LSTM: 
LSTM is a type of recurrent neural networks that has the ability to learn from long sequences of 

data while remembering relevant information from past time steps. A typical LSTM layer in a deep 

learning model consists of multiple LSTM cells. Each cell has four gates to control the flow of 

information; input gate, output gate, forget gate and the cell state. These gates can learn which 

data in a sequence is important to keep or throw away. By doing that, it can pass relevant 

information down the long chain of sequences to make predictions [35]. Another similar, yet 

simpler cell structure is called GRU. We experimented with both cell types in our model and chose 

LSTM because it performed better. The architecture we used in our experiment is shown in (Figure 

1). All the lab values will be input to the LSTM block to learn from the sequential data. Each LSTM 

block include a LSTM layer, which has a "tanh" as a built-in activation function. Then comes a Batch 

Normalization layer, which reduces the internal covariant shift and reduces the dependence of 

gradients on the scale of the parameters or their initial values ensuring a more stable training. We 

do not use a Dropout layer in our architecture because we already use batch normalization which  

offer the same network stabilization without the risk of variance shift [36]. After the sequential 

data pass through the layers, it will be concatenated with the demographic’s features. The 

concatenated data will then go through a stack of fully connected layers ending with a last dense 

layer that has a sigmoid activation function. During forward propagation, the output probabilities 

will be compared to a threshold to produce the binary labels that are used to calculate the loss 

and the other evaluation metrics. In (Table 1), we show the important hyperparameters used in 

our architecture. 

Table S1. The LSTM model hyperparameters. 

Layer name Layer details 

LSTM_1_1 no_cells= 50 
drop_11 Rate= 0.2 

LSTM_1_2 no_cells= 100 

drop_12 Rate= 0.3 
LSTM_1_3 no_cells= 100 

drop_13 Rate= 0.3 
Dense_2 no_cells = 40 

Dense_3 no_cells = 140 
DROP_3 Rate= 0.2 

Learning rate 0.01 

 

 



 
Figure S1. The LSTM model used in our experiments. 

 

 



 

 

CNN 
Convolutional neural network is a class of deep neural networks that is inspired by the visual 

cortex in animals where individual neurons respond to only a specific part of the visual field called 

receptive field [37]. Convolutional networks learn to optimize its kernels to extract information 

from input data in a successive manner. CNNs have lots of applications in image classification [38], 

text classification [2] and natural language processing [39]. Additionally, they proved to work well 

on time series forecasting problems like in [27], outperforming LSTMs often in terms of total 

training time in a more computationally efficient manner [28]. In our case we use a 1-Dimensional 

multi-CNN where the kernels (filters) move along the time axis applying convolution operation on 

all features. The kernel size defines how many time-steps one kernel covers at any point in time. 

In (Figure 2), the network architecture used in our experiments is shown and in (Table 2) , the 

important hyperparameters are stated. 



 

Figure S2. The CNN model used in our experiments. 

 



   Table S2. The CNN model hyperparameters. 

 

Multi-CNN 
The CNN architecture we developed takes two streams of the input sequences in parallel. Each 

stream will be processed with different filters. This ensures that we capture short-term 

dependencies in the sequences as well as long-term ones. Additionally, in each convolutional 

block, the activation function is replaced with a modified version of the ReLU activation function 

called LeakyReLU which performed better than ReLU with CNN. LeakyReLU helps overcome the 

issue of the "dying ReLU", where the node keeps outputting an activation value of 0 when the 

summed input to it is negative (it happens with large weights update) [40]. After the convolution 

blocks, the network continues the same as the LSTM network with fully connected (dense) layers 

as shown in (Figure 3). In (Table 3), the important hyperparameters for the network are stated. 

 

Layer name Layer details 
CONV_1_1 no_filters= 100, CNN kernel size=2 

CONV_1_2 no_filters= 100, CNN kernel size=3 
CONV_1_3 no_filters= 100, CNN kernel size=3 

Dense_2 no_cells = 200 
Dense_3 no_cells = 200 

DROP_3 Rate= 0.2 

Learning rate 0.0003 



 

Figure S3. The multi-CNN model used in our experiments. 



Table S3. The multi- CNN model hyperparameters. 

Layer name Layer details 
CONV_1_1 no_filters= 100, CNN kernel size=2 

CONV_1_2 no_filters= 50, CNN kernel size=3 
CONV_1_3 no_filters= 50, CNN kernel size=3 

CONV_2_1 no_filters= 100, CNN kernel size=4 
CONV_2_2 no_filters= 65, CNN kernel size=3 

CONV_2_3 no_filters= 45, CNN kernel size=3 

Dense_2 no_cells = 200 
Dense_3 no_cells = 200 

DROP_3 Rate= 0.2 
Learning rate 0.0003 

 

 TRANSFORMER 
Transformers are a recent neural network architecture that were derived from the attention 

mechanism first proposed in [29]. The mechanism was designed initially for translation tasks, 

which was done using RNNs before. Transformers have the advantage that they can be very 

efficiently parallelized. This allowed training excessively big models on huge datasets. For 

example, the GPT-3 model has 175 billion parameters and was trained on 45 TB of text data. 

Additionally, it is quite easy to switch from an existing RNN architecture  to a transformer one 

because inputs are of the same shape. Transformers typically use a collection of superimposed 

sinusoidal functions to represent the position of words in NLP tasks. However, in time series 

tasks, we need to attach the meaning of time to our input. One way is introduced by authors 

in [30], where each input feature is represented as a linear component and a periodic 

component according to the following equation:   

𝑡2𝑣(τ)[𝑖] = {
𝜔𝑖𝜏 + 𝜑𝑖 , 𝑖 = 0

𝐹(𝜔𝑖𝜏 + 𝜑𝑖), 1 ≤ 𝑖 ≤ 𝑘
}   

 

t2v(τ)[i] is the ith element of 𝑡2𝑣(𝜏)[𝑖] and (𝜏)  is a scalar notion of time, e.g., days, hours, 

etc. F is a periodic activation function, e.g., the sine function, and φi, ωi  are learnable 

parameters. The result at the end will be a learned vector representation of time steps that 

will be concatenated with the input data before the attention layers. This model 

architecture, according to our knowledge, was never used on lab values before. The model 

hyperparameters we used in our experiments are shown in (Table 4). Each attention block 

consists of multi-head self-attention, drop out, layer normalization and feed forward layer 

(1D convolution). After the attention blocks, the architecture continues like the other 

models. 

 

Table S4. The Transformer model hyperparameters. 

Layer name Layer details 

TSTransformer time2vec_dim = 1, num_attention_heads= 
2, head_size=128, num_layers=2, 
dropout=0 

Dense_2 no_cells = 50 
Dense_3 no_cells = 100 

DROP_3 Rate= 0.3 



Learning rate 0.001 
 

TCN 
Temporal Convolutional Networks (TCNs) were first introduced in [31] for video-based action 

segmentation. Not long after that, it was used for sequence modelling tasks like weather 

prediction [41]. TCN differs from conventional CNN in two ways: First, TCN can take a sequence of 

any length and output a sequence of the same length using zero padding. Second, TCN perform 

causal convolution. This means that the output at time  t is only convolved with samples that 

occurred before t. One of the short comings of the causal convolution, is that the network can 

look back in time with size linear in the depth of the network. This makes it hard to model long 

sequences. To overcome this issue, the authors in [31] implemented a version of TCN with dilated 

convolution that allowed the network to have a large receptive field and to extract long-term 

patters. The dilated convolution operation F on element s of a sequence x ∈ Rn with a filter 

f: 0, … , k − 1 → R is defined by: 

𝑭(𝒔) = ∑ 𝒇(𝒊)

𝒌−𝟏

𝒊=𝟎

⋅ 𝒙𝒔−𝒅⋅𝒊  

where k is the filter size, d is the dilation factor and (s − d) ⋅ i accounts for the direction of the 

past. In (Figure 4), an example of dilated causal convolution with filter size k=3 and dilation 

factor d=1,2,4 is shown. The receptive field can cover all values of the input sequence.  

 
Figure S4. A dilated causal convolution (d=1,2,4, and k = 3). 

In general, TCN networks have the advantage that they can be trained in parallel with less memory 

unlike RNNs. Additionally, they support variable length inputs and can easily replace any existing 

RNN network. In (Figure 8), the TCN architecture we have designed and experimented with is 

shown.  



 

Figure S5. The TCN model used in our experiments. 



Table S5. The TCN model hyperparameters. 

Table 3 

 

 

 

 

LIGHTGBM 
We wanted to include a non-deep learning algorithm to be compared with our DL solutions. 

Therefore, we have picked LightGBM, which is a gradient boosting framework that uses tree -

based learning algorithm [34]. We have used the LightGBM python library’s implementation 

of the LightGBM classifier [34]. We have trained the classifier on each of the lab values 

separately as the classifier does not support the multi-label classification. Then, we tested 

each trained model on its respected lab value test dataset. Finally, we have used micro 

averaging to calculate the accuracy, precision, recall and F1 score of the whole dataset.  

Layer name Layer details 

LGBMClassifier learning_rate=0.9, max_depth=-6, 
random_state=42 

 

Evaluation Metrics 

In our work, we are predicting the output binary vector of the future time step rather than the actual 

numerical lab values. We have tried training the models as regression models predicting the actual 

numerical values and minimizing the minimum squared error (MSE). Then, we converted the predicted 

numerical output to binary vectors using the recommended ranges. However, we received better 

results when we treated the models as multi-label, multi-class classifiers predicting the binary vectors 

directly. Therefore, the evaluation metrics we used for such classification problems can be derived 

from (Table 3), which is called the confusion matrix. It is used to evaluate the predictions of a binary 

classifier by comparing how many outputs were predicted correctly or how many were predicted 

wrongly to the total number of positive predictions (P) or negative predictions (N). Additionally, the 

following evaluation metrics can be derived from the table as follow: 

• 𝐵𝑖𝑛𝑎𝑟𝑦 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
𝑇𝑃+𝑇𝑁

𝑃+𝑁
 

• Precision (positive predictive rate)=
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

• Recall (true positive rate)=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

• F1 score (harmonic mean)= 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Layer name Layer details 

TCN_1_1 no_filters= 50, no_stacks= 2 
TCN_1_2 no_filters= 100, no_stacks= 2 

Dense_2 no_cells = 40 
Dense_3 no_cells = 140 

DROP_3 Rate= 0.2 
Learning rate 0.001 


