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Abstract

Background: In recent years, the volume of medical knowledge and health data has increased rapidly. For example, the increased
availability of electronic health records (EHRs) provides accurate, up-to-date, and complete information about patients at the
point of care and enables medical staff to have quick access to patient records for more coordinated and efficient care. With this
increase in knowledge, the complexity of accurate, evidence-based medicine tends to grow all the time. Health care workers must
deal with an increasing amount of data and documentation. Meanwhile, relevant patient data are frequently overshadowed by a
layer of less relevant data, causing medical staff to often miss important values or abnormal trends and their importance to the
progression of the patient’s case.

Objective: The goal of this work is to analyze the current laboratory results for patients in the intensive care unit (ICU) and
classify which of these lab values could be abnormal the next time the test is done. Detecting near-future abnormalities can be
useful to support clinicians in their decision-making process in the ICU by drawing their attention to the important values and
focus on future lab testing, saving them both time and money. Additionally, it will give doctors more time to spend with patients,
rather than skimming through a long list of lab values.

Methods: We used Structured Query Language to extract 25 lab values for mechanically ventilated patients in the ICU from
the MIMIC-III and eICU data sets. Additionally, we applied time-windowed sampling and holding, and a support vector machine
to fill in the missing values in the sparse time series, as well as the Tukey range to detect and delete anomalies. Then, we used
the data to train 4 deep learning models for time series classification, as well as a gradient boosting–based algorithm and compared
their performance on both data sets.

Results: The models tested in this work (deep neural networks and gradient boosting), combined with the preprocessing pipeline,
achieved an accuracy of at least 80% on the multilabel classification task. Moreover, the model based on the multiple convolutional
neural network outperformed the other algorithms on both data sets, with the accuracy exceeding 89%.

Conclusions: In this work, we show that using machine learning and deep neural networks to predict near-future abnormalities
in lab values can achieve satisfactory results. Our system was trained, validated, and tested on 2 well-known data sets to ensure
that our system bridged the reality gap as much as possible. Finally, the model can be used in combination with our preprocessing
pipeline on real-life EHRs to improve patients’ diagnosis and treatment.

(JMIR Med Inform 2022;10(8):e37658) doi: 10.2196/37658
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Introduction

Background
Machine learning and data analysis methods are used for diverse
applications, such as anomaly detection [1], text classification
[2], image segmentation [3], and time series forecasting [4].
One of the fields in which machine learning has become
extremely popular recently is medicine. In medicine, there are
now other application due to the improved availability of data.
In particular, medical images [5] and electronic health records
(EHRs) [6,7] represent prominent examples here. Much research
has been done on medical images to detect diseases, such as
pneumonia [8], which was driven by the advancements in
computer vision. In addition, EHRs enabled the use of machine
learning models to perform many tasks, such as predicting
hospital length of stay [9] and mortality in septic patients [10].
In these studies, the authors used EHRs to train their machine
learning models. However, EHRs have so much more data that
with the right tools, they can support many valuable applications.

In this study, we consider the treatment of critically ill patients
in the intensive care unit (ICU). Throughout the treatment of
these patients, laboratory data are regularly gathered. Due to
the substantial number of values to be monitored in the ICU,
which sometimes can be more than 100 lab tests [11], important
anomalies or trends may not be noticed. This can lead to
suboptimal treatment strategies and complications in the
patient’s case. For example, early changes in lab values for
patients with COVID-19 are important predictors of mortality
[12]. The correct analysis of laboratory anomalies can direct
treatment strategies, particularly in the early detection of
potentially life-threatening cases. This should aid in resource
allocation and save lives by allowing for timely intervention.
Furthermore, health care workers spend 30%-50% of their time
in front of computers and must deal with a mass of patient data
[13,14]. Any savings in that time can free them to spend more
time with patients.

Prior Work
Because of the recent availability of big data in the medical
field, especially EHRs, there has been a growing interest in
applying machine learning tools for medical applications.
Working with medical data from EHRs can be quite challenging
due to the inconsistent sampling of lab measurements, high
frequency of missing values, and presence of noisy data.
Additionally, there is no standardized way to process medical
data before applying machine learning algorithms on them.
Nevertheless, many authors have managed to process the data
and apply machine learning algorithms for medical sequence
modeling. Authors [15] have developed a masked, self-attention
mechanism that uses positional encoding and dense interpolation
strategies for incorporating temporal order. The authors trained
and tested their model on the MIMIC-III data set and achieved
better performance on them compared to recurrent neural
networks (RNNs). The benchmarking tasks include predicting
mortality (classification), length of stay (regression),

phenotyping (multilabel classification), and decompensation
(time series classification) [16]. Although the benchmarking
tasks include a classification task, none of these tasks include
lab values or the modeling of irregularly sampled sequences
with large amounts of sparse data. The benchmark is created to
compare different machine learning models on a specific type
of medical data extracted from the MIMIC-III data set and
covers only cover only 4 tasks. However, MIMIC-III has much
more data that can allow for performing many more tasks like
the one in this study.

There has also been some work that compares different
approaches and machine learning algorithms for learning from
irregularly sampled time series, which is mostly the case in
medicine. For example, authors [17] compare modeling
primitives that allow learning from the different forms of
irregular time series, such as discretization, interpolation,
recurrence, attention, and structural invariance. The authors
discuss the pros and cons of each of these modeling primitives
and the tasks for which they are suited. Another study [18] used
a recurrence-based approach using specific versions of RNNs
called gated recurrent units (GRUs) and discussed the
advantages of using it instead of the other approaches.
Additionally, authors [19] have proposed a system for early
detection of sepsis using an interpolation-based method for data
imputation followed by using temporal convolutional networks
(TCNs) and dynamic time warping. The authors used a multitask
gaussian process for multichannel data imputation and later
used a TCN model to predict the probability of a sepsis diagnosis
in the future. The authors proved that their proposed algorithm
outperforms the state-of-the-art algorithm for sepsis detection.
In contrast, we use a discretization-based approach followed by
data imputation to convert the irregularly sampled time series
to a regularly sampled one, as it provides an easy way to
understand, debug, and implement a framework to deal with
sensitive lab values that can be generalized effectively to other
EHRs.

Goal of This Study
This work’s objective is to analyze laboratory results (lab values)
of patients in the ICU and classify which of these lab values are
predicted to be out of the normal range soon (the next time these
tests are done) and which are predicted to be normal. This allows
health workers to focus on these laboratory values, their
significance, their relation to the patient's current case, and their
impact on the patient's future condition. This can potentially
lead to reducing the length of the ICU stay and mortality [20].
Moreover, health care workers can focus future testing on these
lab values and not waste time and resources on unnecessary
tests that constitute approximately 50% of the tests ordered in
the ICU [21]. Finally, it will allow the medical staff to reduce
the time they need to check all the lab values and focus on the
relevant ones, giving them more time to spend with patients
[14].
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Methods

Problem Definition
The task at hand is to predict which lab values will be normal
and which will be abnormal in future, for a given period of ICU
stay. The input data contain the patients' demographics and
numerical lab values from the moment they were admitted till
the end of their stay. The output is a binary vector, where each
number represents the likelihood of a specific lab value to be

abnormal (1) or normal (0) in the next 4 hours. Therefore, our
problem is a “many to one” or a multilabel classification
problem. Moreover, we have chosen the 4-hour time window
because the majority of lab values found in MIMIC-III and
eICU are recorded every 4 hours. Therefore, using this time
step will introduce the least amount of data artifacts, especially
considering that the changes in lab values are not noticeable for
smaller time frames (like 1 hour). The same time window for
lab values has been used by other authors [22]. Finally, the
general diagram of the system is shown in Figure 1.

Figure 1. Overall abnormality detection system in practice. DNN: deep neural network.

Data and Cohort Definition
The data used to train, validate, and test the different prediction
models are derived from the MIMIC-III database. It is a database
that contains data from 31,532 unique ICU stays of patients
who stayed within the ICUs at the Beth Israel Deaconess
Medical Center [6] between 2001 and 2012. We also used data
derived from the eICU Collaborative Research Database [7]. It
is a multicenter database for critical care research created by
The Philips eICU program. It contains data on 200,859 ICU
stays from 335 ICUs units in the United States of America. In
both databases, a unique ICU stay ID is associated with every
unique ICU admission.

Our cohort focuses on mechanically ventilated patients in the
ICU. This cohort is truly relevant these days because of the
COVID-19 virus that caused a sharp increase in the number of
patients in the ICU receiving mechanical ventilation. For these
patients, it is vital to know which set of lab values have
abnormal trends and focus on them, as it has a direct relation

to how the case will develop [12]. The same cohort was used
in a previous work focused on dynamically optimizing
mechanical ventilation in critical care using reinforcement
learning [22]. Using this cohort, we extracted 25,086 eICU and
11,943 MIMIC-III ICU stays with mechanical ventilation events.
The duration of the ICU patients' stays ranges from 12 h to 72
h in 4-hour time steps. Patient demographics and clinical
characteristics are shown in Table 1.

The input data consist of 3 demographic features (age, sex,
weight) and 25 lab values (white blood cell count, PaCO2,
hemoglobin, etc). The lab values chosen are the most relevant
to the mechanically ventilated patients, as shown by the medical
team members from the university hospital of Rheinisch
Westfälische Technische Hochschule (RWTH) Aachen in their
previous work [22]. In Multimedia Appendix 1, the chosen
features from the MIMIC-III and eICU data sets are listed along
with their means and SDs.
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The output is a binary vector of length 25. To convert numerical
lab values to binary values, we used the reference ranges
followed by the American College of Physicians [23]. Finally,

the queries of Structured Query Language (SQL) used to extract
the cohort data from both databases are included in the Git
repository [24].

Table 1. Clinical and demographic properties of the study population [16].

eICU data setMIMIC-III data setProperty

3355Number of ICUsa

2014-20152001-2012Data acquisition timespan

23,69911,443Number of included patients (N)

65.0 (54-74)66.9 (56.3-77.5)Age (years), median (IQR)

83.5 (22.0)85.7 (18.1)Body weight in kg, mean (SD)

10,546 (42%)4329 (36.3%)Sex, female, n(%)

14,540 (58%)7614 (63.7%)Sex, male, n (%)

13.211.1In-hospital mortality, %

3.0 (1.71-5.9)3.1 (1.6-6.1)LOSb in ICU (days), median (IQR)

aICU: intensive care unit.
bLOS: length of stay.

Preprocessing
The patients’ raw data extracted from the MIMIC-III and eICU
data sets were very sparse and had several missing values.
Therefore, it was necessary to perform preprocessing to prepare
the data for the machine learning pipeline. First, the
time-windowed sample-and-hold method was used to handle
missing values. In this method, the data sample is held (repeated)
until the next available data sample or the maximum hold time
is reached. For each feature, we conducted a frequency analysis
to determine how often a new measurement is produced. The
counts of consecutive measurement time differences are obtained
and when their cumulative sum exceeds a threshold, the first
value where this occurs is taken as the hold time. When the
feature's hold time exceeds this maximum, the data point is
considered corrupted [25]. For the rest of the missing values, a
k-nearest neighbor imputation with singular value decomposition
and mean imputation were used [26]. Any ICU stay that had
more than 50% missing data was discarded (occurrence <1%
in the overall cohort) [22]. Finally, the Tukey range test was
used to detect and delete outliers. The preprocessing steps are
explained in detail in the Git repository [24].

Prediction System Overview
The overall system architecture used for predicting abnormalities
in patients' lab values is shown in Figure 2. After performing
the preprocessing steps explained earlier, the output time series
will be separated into two main types: demographics and lab

values. Each ICU stay will be split into multiple shorter
sequences using the moving window technique. Figure 3
presents an example of an ICU stay of length L=11 (44 hours).
Here, Xm represents the patient's input data vector at time step

m ∈ +, and Ym represents the patient's output binary vector.

For a window size W ∈ + of 8, we have 3 subsequences
extracted from the stay. For example, W1 includes the input
vectors [X0:X7] and the output binary vector Y8. The process of
the moving window is applied to ICU stays in the data sets
(MIMIC-III, eICU). Then, the resulting subsequences are
shuffled and used to train, validate, and test the different
machine learning models that we have experimented with, as
shown in Figure 2. This means the windowed subsequences
from the same ICU stay can be distributed across the training,
validation, and testing sets. Moreover, we experimented with
different window sizes between W=5 and W=10 and chose the
one that gave us the best results for all the models, as explained
in the Results section.

We experimented with predicting the exact numerical lab values
(regression problem) and then converting the predicted output
to a binary vector after comparing the values with the normal
ranges. The models were then trained to minimize the minimum
squared error loss. The results were 10%-20% worse than those
obtained when predicting the output binary vector directly and
optimizing for the binary cross-entropy loss. Therefore, we
selected this system model.
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Figure 2. Overall system model used in our study when trained on the MIMIC-III data set and tested on the eICU data set. ICU: intensive care unit;
Sigmoid is an activation function; L: lab value; t: time step.

Figure 3. Moving window technique to extract sequences from intensive care unit stays. X and Y represent the input and output data respectively; W
represents the windows extracted from the input sequences.

Prediction Models
The goal of the prediction model in our scenario is to predict
abnormalities in laboratory values for a given input sequence.
The machine learning problem is a multilabel classification
problem because multiple lab values are classified as normal
or abnormal at the same time (multiclass) and more than 1 lab
value can be abnormal at the same time (multilabel). We
experimented with four current deep learning (DL) approaches:
long short-term memory (LSTM), self-attention with time
encoding (transformer architecture), convolutional neural

network (CNN), and TCN. In the following subsections, each
model architecture is discussed briefly. The models are
explained in more detail in Multimedia Appendix 2 [2,27-39].

LSTM models
LSTM is a type of RNN that has the ability to learn from long
sequences of data. A typical LSTM layer in a DL model consists
of multiple LSTM cells. Another similar yet simpler cell
structure is called GRU [4]. We experimented with both cell
types in our model and chose LSTM because it performed better.
The architecture used in our experiment is shown in Figure 4.
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All the lab values will be input to the LSTM block to learn from
the sequential data. Each LSTM block includes an LSTM layer,
which has “tanh” as the built-in activation function. Then comes
a batch normalization layer after the sequential data pass through
the layers, and these data will be concatenated with the
demographic features. The concatenated data will then go

through a stack of fully connected layers ending with a last
dense layer that has a sigmoid activation function. During
forward propagation, the output probabilities will be compared
to a threshold to produce the binary labels that are used to
calculate the loss and other evaluation metrics.

Figure 4. LSTM architecture used in our experiments. LSTM: long short-term memory; ReLU: rectified linear unit; Tanh, ReLU and Sigmoid are
activation functions.

CNN models
CNNs learn to optimize their kernels to extract information
from input data in a successive manner. Additionally, they work
well on time series forecasting and classification problems [27],
often outperforming LSTMs in terms of the total training time
in a more computationally efficient manner [28]. In our case,
we used a 1D multiple CNN (M-CNN), where the kernels
(filters) move along the time axis performing convolution

operations on all features. The kernel size defines how many
time steps 1 kernel covers at any point in time.

Aside from the normal CNN that takes 1 input stream, we
developed an architecture that takes 2 streams of the input
sequences in parallel. Each stream will be processed with
different filters. This ensures that we capture short-term
dependencies in the sequences as well as long-term ones. The
network architecture is shown in Figure 5.
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Figure 5. Multiple convolutional neural network model architecture used in our experiments. Conv1D: 1D convolutional layer; LeakyReLU: leaky
rectified linear unit; ReLU: rectified linear unit; Sigmoid, LeakyReLU, and ReLU are activation functions.

Transformer models
Transformers are a recent neural network architecture derived
from the attention mechanism first proposed in an earlier study
[29]. The mechanism was designed initially for translation tasks,
which were earlier accomplished using RNNs.

Transformers typically use a collection of superimposed
sinusoidal functions to represent the position of words in natural

language processing tasks. However, in time series tasks, we
need to attach the meaning of time to our input. Authors [30]
have introduced a method where each input feature is
represented as a linear component and a periodic component.
The result at the end will be a learned vector representation of
time steps that will be concatenated with the input data before
the attention layers. The model architecture we developed is
shown in Figure 6.
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Figure 6. Transformer architecture used in our experiments. Conv1D: 1D convolutional layer; Time2Vec: time to vector transformation; ReLU: rectified
linear unit; ReLU and Sigmoid are activation functions.

TCN models
TCNs were first introduced for video-based action segmentation
[31]. Not long after that, they were used for sequence modeling
tasks like the detection of sepsis [19]. A TCN differs from a
conventional CNN in 2 ways; first, a TCN can take a sequence
of any length and output a sequence of the same length using

0 padding; second, a TCN performs causal convolution. In
general, TCNs are advantageous because they can be trained in
parallel with less memory unlike RNNs. Additionally, they
support variable length inputs and can easily replace any existing
RNN. Figure 7 shows the TCN architecture that we designed
and used in our experiments.
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Figure 7. TCN architecture used in our experiments. LeakyReLU: leaky rectified linear unit; ReLU: rectified linear unit; TCN: temporal convolutional
network; LeakyReLU, ReLU, and Sigmoid are activation functions.

Evaluation Metrics
In our work, we predicted the output binary vector of the future
time step rather than the actual numerical lab values. We tried
training the models as regression models predicting the actual
numerical values and minimizing the minimum squared error.
Then, we converted the predicted numerical output to binary
vectors using the recommended ranges. However, we received
better results when we treated the models as multilabel,
multiclass classifiers predicting the binary vectors directly.
Therefore, the evaluation metrics we used are binary accuracy,
precision, recall, and F1 score.

Evaluation Setup
As we were predicting multiple lab values at the same time and
all the classes were of equal importance, we used
micro-averaging to calculate the accuracy, precision, recall, and
F1 globally. These evaluation metrics were used to evaluate the
models' training, validation, and testing. Additionally, to
compare the models, the following points were followed: First,
the models' architectures and hyperparameters were optimized
using the Keras Tuner library [40] to ensure that the models
performed at their best. Second, the models were trained to
optimize the binary cross-entropy loss [41]. Third, early stopping
was used to stop the model's training once the validation loss

did not change by 0.01 for 10 consecutive epochs. This reduces
the chances of model overfitting. Fourth, we set the seed for all
the random processes during model training to ensure
replicability of our results. Finally, we used the same threshold
(TH=0.5) and same window size (sequence length=6) for all
the models to ensure a fair comparison. We used 0 padding for
sequences shorter than 6 time steps (ICU stay length<24 hours).
Moreover, we implemented a gradient boosting–based method
(LightGBM) for comparison with DL-based methods.
LightGBM is one of the best performing non-DL–based
algorithms that is shown to perform well on time series
classification tasks [32].

We experimented with 2 approaches for training the models. In
the first approach, we trained the models and validated them
on the MIMIC-III data set. Then, we tested them on the
MIMIC-III and eICU data sets, as shown in Figure 2. In the
second approach, we trained and validated them on the eICU
data set instead. Then, we tested them on the eICU and
MIMIC-III data sets. Table 2 shows counts of the training,
validation, and testing samples used in both methods from each
data set (window size=6). The same cohort of patients was used
in both cases, but eICU has much more patient data that led to
a much bigger set than MIMIC-III. Finally, the model
architectures and hyperparameters can be found on our Git
repository [24] and in Multimedia Appendix 2.
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Table 2. Sample counts for training, validation, and testing in both training methods.

Number of second testing samplesNumber of first testing samplesNumber of validation samplesNumber of training samplesMethod

196,208 (eICU)21,526 (MIMIC-III)12,915 (MIMIC-III)73,190 (MIMIC-III)#1

86,106 (MIMIC-III)49,052 (eICU)29,431 (eICU)166,776 (eICU)#2

Ethics Approval
Approval for data collection, processing, and release for the
MIMIC-III database has been granted by the Institutional
Review Boards of the Beth Israel Deaconess Medical Center
(Boston, United States) and Massachusetts Institute of
Technology (Cambridge, United States). Approval for data
collection, processing, and release for the eICU database has
been granted by the eICU research committee and exempt from
Institutional Review Board approval. All data were processed
using the computational infrastructure at the RWTH Aachen
University and the University Hospital at RWTH Aachen in
accordance with European Union data protection laws.

Results

In Figures 8, 9 and 10, we report the validation loss, F1 score,
and accuracy of the different models during training,
respectively. The models’ names ending with “mimic” indicate
that they were trained on the MIMIC-III data set and those

ending in “eicu” refer to the models trained on the eICU data
set. Moreover, because of the early stopping used during
training, some models stopped training before others. Thus,
their metrics are constant after the stopping point.

In Tables 3 and 4, we report the testing accuracy, recall,
precision, and F1 scores of the different models. All the results
were averaged over all the lab values and the testing samples.

As we expect our system to run continuously on huge amounts
of data in hospitals, we want the performance of the chosen
model to be good enough to meet such demands. Therefore, we
measured the models' inference times. Experiments were run
on a computer with an Intel(R) Core i9-9900K processor (Intel
Corporation) running at 3.60 GHz using a 32-GB DDR4 RAM
and Nvidia GTX 1080ti graphics processing unit (Nvidia
Corporation), running Ubuntu (version 20.04, Canonical Ltd),
Python (version 3.8, Python Software Foundation), and
TensorFlow (version 2.6, Google Brain). Table 5 reports the
inference time for each model on a whole batch (batch size=128
samples).

Figure 8. Validation loss of the different models. LSTM: long short-term network; M-CNN: multiple convolutional neural network; TCN: temporal
convolutional network; Val.: validation; ICU: intensive care unit.
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Figure 9. Validation F1 score of the different models. LSTM: long short-term network; M-CNN: multiple convolutional neural network; TCN: temporal
convolutional network; Val.: validation; ICU: intensive care unit.

Figure 10. Validation accuracy of the different models. LSTM: long short-term network; M-CNN: multiple convolutional neural network; TCN:
temporal convolutional network; Val.: validation; ICU: intensive care unit.

JMIR Med Inform 2022 | vol. 10 | iss. 8 | e37658 | p. 11https://medinform.jmir.org/2022/8/e37658
(page number not for citation purposes)

Ayad et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Testing results for the different models over all lab values (micro-average) on the MIMIC-III data seta.

F1 scoreRecallPrecisionAccuracyTraining data set and model

MIMIC-III

0.850.870.830.85LSTMb

0.840.850.840.86CNNc

0.880.890.870.88M-CNNd

0.840.810.880.86Transformer

0.860.850.870.86TCNe

0.780.760.820.83LightGBMf

eICU

0.80.810.790.8LSTM

0.840.830.860.85CNN

0.870.860.880.87M-CNN

0.850.840.860.86Transformer

0.830.840.820.83TCN

0.770.780.770.82LightGBM

aThe models listed under MIMIC-III were trained on the MIMIC-III data set and those under eICU were trained on the eICU data set.
bLSTM: long short-term memory.
cCNN: convolutional neural network.
dM-CNN: multiple convolutional neural network.
eTCN: temporal convolutional network.
fLightGBM: gradient boosting–based method.
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Table 4. Testing results for the different models over all lab values (micro-average) on the eICU data seta.

F1 scoreRecallPrecisionAccuracyTraining data set and model

MIMIC-III

0.80.80.810.79LSTMb

0.80.80.80.78CNNc

0.810.830.80.8M-CNNd

0.750.690.820.75Transformer

0.730.720.740.71TCNe

0.760.750.780.75LightGBMf

eICU

0.840.830.850.82LSTM

0.840.830.860.85CNN

0.90.910.90.89M-CNN

0.870.880.870.86Transformer

0.890.890.880.89TCN

0.770.780.770.82LightGBM

aThe models under MIMIC-III were trained on the MIMIC-III data set and those under eICU were trained on the eICU data set.
bLSTM: long short-term memory.
cCNN: convolutional neural network.
dM-CNN: multiple convolutional neural network.
eTCN: temporal convolutional network.
fLightGBM: gradient boosting–based method.

Table 5. Inference time for the different models.

Average inference time/batchModel name

654 msLSTMa

220 msCNNb

285 msM-CNNc

854 msTCNd

598 msTransformer

121 msLightGBMe

aLSTM: long short-term memory.
bCNN: convolutional neural network.
cM-CNN: multiple convolutional neural network.
dTCN: temporal convolutional network.
eLightGBM: gradient boosting–based method.

Discussion

In this work, we developed an end-to-end system to extract and
process lab results from EHRs and applied various machine
learning algorithms to determine which lab values will be out
of range in the next 4 hours with satisfactory results. This
enables medical staff to focus on these lab values that can lead
to improvements in overall patient diagnosis and treatment.
Additionally, it can help reduce the time and cost wasted on

irrelevant lab tests. The following steps were taken to reach this
goal: First, we used SQL queries to extract the relevant patient
data following our cohort from MIMIC-III and eICU data sets.
Second, we used the time-windowed sample-and-hold method
alongside k-nearest neighbor imputation with mean imputation
and singular value decomposition to fill missing values.
Moreover, we used the Tukey range test to detect anomalies
and delete them. Third, we experimented with non-DL methods
like LightGBM as well as 4 DL algorithms for time series
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classification. The DL-based method stacks models through
mapping and processing functions between the models, using
gradient descent or momentum methods to optimize fit. Gradient
boosting methods like LightGBM iteratively fit models to error
terms and average results within a generalized linear modeling
framework using base learner models at each iteration,
introducing a penalty term into the base learner models. Finally,
we trained and tested our algorithms on 2 of the well-known
EHR data sets, MIMIC-III and eICU. Cross-validating our
algorithms on these 2 data sets ensures not only a broader
performance comparison, but also helps analyze how far the
different algorithms can generalize on new unseen data.

A deeper analysis of the training results of the different
DL-based models (Figures 8, 9 and 10) revealed that the M-CNN
model trained on the eICU data set yielded better results at the
end of the training than any other model. Additionally, we can
see that the performance of both the TCN and transformer model
improved significantly when trained on more data (eICU data
set). This can be better understood from the results in Tables 3
and 4. First, the models trained on the eICU data set generalized
better on data that they had not seen before from both the data
sets. This is because the models had more data to train on, so
they could see more variations and cases that they learned. On
the other hand, the models trained on the MIMIC-III data set
(43% the size of eICU training samples) performed well on the
testing samples from MIMIC-III but performed much worse on
the testing samples from eICU. Second, the M-CNN model
performed the best in terms of almost all the evaluation metrics
in both training methods. CNN models perform well on many
sequenced modeling tasks, often outperforming RNN
architectures like LSTM or GRU. Additionally, CNN-based
models have the least number of trainable parameters out of the
different DL-based methods and occupy the least memory,
making them perform better on data sets with small amounts
of training data. On the other hand, standard CNNs can only
work with fixed-size inputs and usually focus on data elements
that are in immediate proximity due to their static convolutional
filter size. However, combining multiple CNN models helps
increase the accuracy further by applying convolutions with
multiple filter sizes and combining the outputs to give a more
robust prediction. Moreover, in our case, we chose a static,

relatively short input sequence length, thus mitigating the issue
of long, variable length sequences. In case of long, variable
length input sequences, a TCN will be a better candidate. A
TCN employs techniques like multiple layers of dilated
convolutions and padding of input sequences to handle different
sequence lengths and detect dependencies between items that
are not next to each other but are positioned on different places
in a sequence. Furthermore, more complicated architectures
like transformers and TCNs with many more trainable
parameters would perform better if they had access to more
data, which is often an issue in the medical field because of the
scarcity of available training data. Therefore, M-CNN
architectures are desirable for modeling medical time series
data with static lengths and relatively short lengths like lab
values requiring relatively smaller training data sets. Moreover,
the M-CNN architecture can generalize well on unseen data
when trained well, considering integrated measures for reducing
overfitting during model training. An interesting fact is that
despite not outperforming the M-CNN model, lightGBM
performed as well (sometimes better) as some other DL-based
approaches while requiring much less training time.
Non-DL–based approaches can model problems with much less
training data but require hand-crafted features and are very
sensitive to outliers and variation in data. Further, removing
seasonality is often needed when dealing with time series data.
Finally, we can see that the LightGBM model is the fastest in
terms of the inference time according to Table 5, followed by
the CNN model, which is the fastest among the DL-based
models. The M-CNN model, despite outperforming the regular
CNN model, is 29% slower in terms of the inference time, which
is expected as the model has more parameters.

Overall, our comprehensive analysis shows the advantage of
using DL models for classifying future abnormalities in lab
values for patients in the ICU. Although we tested our
algorithms on 2 of the most used EHR data sets, further testing
is needed to assess the performance of the full pipeline on other
EHRs, including the preprocessing steps and how well the tuned
hyperparameters of the machine learning models will generalize.
Nevertheless, we believe this study can help other researchers
trying to use machine learning in modeling medical time series
problems.
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Abbreviations
CNN: convolutional neural network
DL: deep learning
EHR: electronic health record
GRU: gated recurrent unit
ICU: intensive care unit
LSTM: long short-term memory
M-CNN: multiple convolutional neural network
RNN: recurrent neural network
RWTH: Rheinisch Westfälische Technische Hochschule
SQL: Structured Query Language
TCN: temporal convolutional network
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