TY - JOUR A1 - Wommer, Lars A1 - Soerjawinata, Winda A1 - Ulber, Roland A1 - Kampeis, Percy T1 - Agglomeration behaviour of magnetic microparticles during separation and recycling processes in mRNA purification T2 - Engineering in Life Sciences N2 - Purification of mRNA with oligo(dT)-functionalized magnetic particles involves a series of magnetic separations for buffer exchange and washing. Magnetic particles interact and agglomerate with each other when a magnetic field is applied, which can result in a decreased total surface area and thus a decreased yield of mRNA. In addition, agglomeration may also be caused by mRNA loading on the magnetic particles. Therefore, it is of interest how the individual steps of magnetic separation and subsequent redispersion in the buffers used affect the particle size distribution. The lysis/binding buffer is the most important buffer for the separation of mRNA from the multicomponent suspension of cell lysate. Therefore, monodisperse magnetic particles loaded with mRNA were dispersed in the lysis/binding buffer and in the reference system deionized water, and the particle size distributions were measured. A concentration-dependent agglomeration tendency was observed in deionized water. In contrast, no significant agglomeration was detected in the lysis/binding buffer. With regard to magnetic particle recycling, the influence of different storage and drying processes on particle size distribution was investigated. Agglomeration occurred in all process alternatives. For de-agglomeration, ultrasonic treatment was examined. It represents a suitable method for reproducible restoration of the original particle size distribution. KW - Magnetisches Trennverfahren KW - mRNA-Impfstoff KW - Agglomerieren KW - agglomeration KW - de-agglomeration KW - high-gradient magnetic separation KW - magnetic beads KW - mRNA-vaccines Y1 - 2021 UR - https://hst.opus.hbz-nrw.de/frontdoor/index/index/docId/110 UR - https://nbn-resolving.org/urn:nbn:de:hbz:tr5-1107 VL - 21 IS - 10 SP - 558 EP - 572 PB - Wiley ER -