TY - JOUR A1 - Baritello, Omar A1 - Khajooei, Mina A1 - Engel, Tilman A1 - Kopinski, Stephan A1 - Quarmby, Andrew A1 - Müller, Steffen A1 - Mayer, Frank T1 - Neuromuscular shoulder activity during exercises with different combinations of stable and unstable weight mass T2 - BMC Sports Science, Medicine and Rehabilitation N2 - Background: Recent shoulder injury prevention programs have utilized resistance exercises combined with different forms of instability, with the goal of eliciting functional adaptations and thereby reducing the risk of injury. However, it is still unknown how an unstable weight mass (UWM) affects the muscular activity of the shoulder stabilizers. Aim of the study was to assess neuromuscular activity of dynamic shoulder stabilizers under four conditions of stable and UWM during three shoulder exercises. It was hypothesized that a combined condition of weight with UWM would elicit greater activation due to the increased stabilization demand. Methods: Sixteen participants (7 m/9 f) were included in this cross-sectional study and prepared with an EMG-setup for the: Mm. upper/lower trapezius (U.TA/L.TA), lateral deltoid (DE), latissimus dorsi (LD), serratus anterior (SA) and pectoralis major (PE). A maximal voluntary isometric contraction test (MVIC; 5 s.) was performed on an isokinetic dynamometer. Next, internal/external rotation (In/Ex), abduction/adduction (Ab/Ad) and diagonal flexion/extension (F/E) exercises (5 reps.) were performed with four custom-made-pipes representing different exercise conditions. First, the empty-pipe (P; 0.5 kg) and then, randomly ordered, water-filled-pipe (PW; 1 kg), weight-pipe (PG; 4.5 kg) and weight + water-filled-pipe (PWG; 4.5 kg), while EMG was recorded. Raw root-mean-square values (RMS) were normalized to MVIC (%MVIC). Differences between conditions for RMS%MVIC, scapular stabilizer (SR: U.TA/L.TA; U.TA/SA) and contraction (CR: concentric/eccentric) ratios were analyzed (paired t-test; p ≤ 0.05; Bonferroni adjusted α = 0.008). Results: PWG showed significantly greater muscle activity for all exercises and all muscles except for PE compared to P and PW. Condition PG elicited muscular activity comparable to PWG (p > 0.008) with significantly lower activation of L.TA and SA in the In/Ex rotation. The SR ratio was significantly higher in PWG compared to P and PW. No significant differences were found for the CR ratio in all exercises and for all muscles. Conclusion: Higher weight generated greater muscle activation whereas an UWM raised the neuromuscular activity, increasing the stabilization demands. Especially in the In/Ex rotation, an UWM increased the RMS%MVIC and SR ratio. This might improve training effects in shoulder prevention and rehabilitation programs. KW - Elektromyographie KW - Schultergelenk KW - Sportler KW - Rotatorenmanschette KW - EMG KW - instability KW - overhead athlete KW - unstable resistance training KW - water pipe KW - rotator cuff Y1 - 2020 UR - https://hst.opus.hbz-nrw.de/frontdoor/index/index/docId/147 UR - https://nbn-resolving.org/urn:nbn:de:hbz:tr5-1470 VL - 12 SP - 1 EP - 14 PB - BMC ER -